
132 Project-based Learning and E-learning

Abstract — Data streaming architecture can be used to
collect data and gain insights into the dynamics of individu-
al or collaborative software development activity that takes
place in higher education courses. There is a place to further
investigate streaming architecture in a given context. The
code versioning platforms, such as GitHub, serving as data
sources in the existing implementations of data streaming ar-
chitecture are lacking in practice. The goal of this paper is to
investigate the implementation of a custom data streaming
architecture that could be used to track real-time students’
analytics in higher education software development courses.
The solution is based on Apache Kafka and GitHub plat-
forms. Also, the architecture developed in the paper could
be considered when planning on integrating LMS (Learning
Management System) as a visual web interface for students’
analytics.

Keywords — data streaming architecture, Apache Kafka,
GitHub, higher education, software development, Learning
Management System (LMS)

I. INTRODUCTION

Data streaming architecture is based on the concept of
events [1]. Event Streaming Platforms, which are based
on the data streaming architecture, provide the infrastruc-
ture that enables software to react in real-time to the giv-
en events [1]. Apache Kafka is an open-source streaming
platform that can make use of producers which are appli-
cations that are sending messages to the Kafka broker [2].
Kafka Broker stores messages that are later accessed by
consumers [2].

Git represents a system that enables tracking chang-
es to the user files and it is considered a Version Control
System (VCS) [3]. GitHub platform relies on git and its’
commands to perform version control of user files.

The aim of this paper is to provide a possible solution
to the data steaming architecture that would be used to col-
lect and process data on students’ activity that takes place
on version control platforms in higher education software
development courses.

Upon considering different use cases of implementing
data streaming architecture and taking good architectural

practices into account, possible architecture is formed. The
purpose of this paper is to investigate the integration of
the version control platform (GitHub platform) with the
data streaming platforms such as Kafka to process events
generated while conducting higher education software en-
gineering courses. This use case is lacking in practice and
could be beneficial for further related work as far as higher
education is concerned.

 The solution gives a presentation of a data streaming
architecture based on Apache Kafka and the GitHub plat-
form. Besides, GitHub webhook concept is described, as
well as the flow of communication between Kafka produc-
er and Kafka consumer. In the proposed solution, the com-
munication between Kafka producer and Kafka consumer
starts with a GitHub webhook event.

Kafka producer and Kafka consumer are implemented
using the Java Spring Boot framework. Java Spring Boot
is an open-source, microservice-based Java web frame-
work [4]. The microservice architecture provides develop-
ers with a fully enclosed application, including embedded
application servers [4].

The question of integrating Learning Management sys-
tems (LMS) such as Moodle LMS into the architecture for
a unified dashboard preview of students’ analytics is also
considered.

II. LITERATURE REVIEW

As the authors state in [5], the GitHub platform pro-
vides insights into social coding activities. Apart from the
popular usage of the GitHub platform in the software de-
velopment industry, this is also the reason to consider us-
ing GitHub as a collaborative software development plat-
form [6] in higher education setup and as a data source in
data streaming architecture.

GitHub data analysis done in [7] demonstrates the pos-
sibilities of data generated through events on the GitHub
platform. Different analytics are considered including the
number of commits per contributor and SNA (Social Net-
work Analysis) analysis [7]. Those analytics could also be
considered when implementing Kafka consumer.

Data streaming architecture based on Apache Kafka
and GitHub for tracking students’ activity in higher

education software development courses
 Milan Miloradović

Department for e-business
The University of Belgrade, Faculty of organizational sciences

Belgrade, Serbia
mm20213510@student.fon.bg.ac.rs

https://orcid.org/0000-0003-4101-2350

Ana Milovanović

Department for e-business
The University of Belgrade, Faculty of organizational sciences

Belgrade, Serbia
am20205027@student.fon.bg.ac.rs

https://orcid.org/0000-0001-5282-881

1332022 International conference on E-business technologies (EBT)

Some of the research papers that are dealing with the
integration of code versioning platforms into the curricu-
lum of the software development university courses have
relied on the GitHub platform and its’ functionality to gain
insight into students’ activities [8][9][10]. However, using
GitHub as a data source provider to deal with real-time
stream processing and analytics in an educational environ-
ment is lacking in practice.

New streaming technologies that are available today
handle stream data with high performance with a message
throughput of millions of messages per second [2]. Data
platforms handle data from different sources and stream
data to different consumers [2].

Events in the Kafka ecosystem are assigned to topics
[11]. Those topics are holding different numbers of logs
(shards or partitions). The number of shards is configur-
able, thus scalability in the Kafka ecosystem is provided
[11].

The use cases of deploying data streaming architecture
are quite diverse in education. In [12] authors have devel-
oped a cloud-based e-learning platform to provide educa-
tional content for the agricultural community. The stream-
ing analysis here is employed in real-time using Apache
Kafka and Apache Spark to provide high-quality video
content to users and to control server resources.

A popular area to employ streaming platforms is cer-
tainly IoT (Internet of Things). In the research presented
in [13], the authors developed a course that is called Net-
work-of-Things Engineering Lab (NoteLab). The course
combines IoT, edge and cloud computing and is dealing
with the implementation of interfaces and protocols that
connect the entire system (MQTT, COAP and HTTP) [13].
Kafka is used as a connector, consisting of a Kafka broker
among other components, using publish/subscribe proto-
col to connect with Kafka producers and Kafka-Firebase
connector to connect to Firebase real-time database [13].

Machine learning is another popular area to take into
consideration when investigating the usage of streaming
platforms. In [14] Apache Kafka is utilized to implement
a stream processing system based on a publish-subscribe
pattern. The system developed in [14] deals with vehicle
detection based on its’ attributes such as color, speed and
type. There are two main steps, the first being getting the
vehicle information from a video, and the second step is
streaming that information to subscribers.

In [15] by making use of DevOps and cloud comput-
ing “continuous quality assurance approach” is facilitated
[15]. The prototype of the solution consisted of detecting
problems that are likely to happen when the new versions
of the microservices are being in building state, deployed,
or targeted with requests [15]. The data crawler observes
all microservice containers that are running, collects the
relevant data and sends the data to the Apache Kafka clus-
ter. Data is further being fetched and indexed in Elastic-
search [15].

Another usage of data streaming is implemented in
CERN HSE (occupational Health & Safety and Environ-
mental protection) Unit [16] which deals with the imple-
mentation of the CERN Safety Policy. Researchers de-
veloped REMUS (Radiation and Environmental Unified
Supervision) system that is using an open-source Apache
Kafka streaming platform to stream real-time data to their
Web Interfaces and Data Visualization Tools [16].

III. METHODOLOGY

In order to create custom data streaming architecture
based on Apache Kafka and GitHub for tracking students’
activity, GitHub webhook, Kafka producer and consumer
are used.

It is necessary to identify components of the data
streaming architecture. Identified components are as fol-
lows (Table 1):

 ■ GitHub users
 ■ GitHub webhook
 ■ Kafka producer
 ■ Kafka cluster
 ■ Kafka consumer
Kafka producer and consumer are implemented using

the Java Spring Boot framework.

Table 1. Identified Components

No.
 Data streaming architecture

Components Example

1. GitHub user Student working on GitHub
repository (push event).

2. GitHub webhook
Mechanism integrated into

GitHub organization of higher
education institution (elab).

3. Kafka producer The application that broadcasts
messages.

4. Kafka cluster Its’ task is to process and organ-
ize the data.

5. Kafka consumer The application that receives
messages.

The first part of the architecture is the GitHub plat-
form. As already stated, it is a platform for version control
and is usually used for various social coding [5] activi-
ties. In this particular case, the GitHub platform serves to
broadcast events that are created within the GitHub organ-
ization. Some of the event types that should be considered
are: push, pull request, merge, view, commit, etc.

134 Project-based Learning and E-learning

GitHub users, in this particular example, are students
within the GitHub organization, which generate events
over their repositories. When one of these events happens,
the GitHub webhook [17] is triggered as shown in Fig. 1.

After that, the GitHub webhook forwards the POST re-
quest to the Kafka producer, which further determines to
which topic to send the event.

The second part of the architecture is the Apache Kafka
(Fig. 1). Apache Kafka consists of a Kafka cluster, Zoo-
keeper server, as well as producer and consumer. Kafka
producer and Kafka consumer are applications where one
application broadcasts (producer) messages and the other
one receives messages from the broadcaster (consumer)
[18].

Kafka cluster's task is to process and organize the data
that is passed to it. Each Kafka cluster contains a list of
topics, where incoming messages are redirected. A topic
is made up of one or more partitions, and each partition is
an edited, immutable sequence to which new records are
constantly added [18].

Based on the GitHub event type that is being pro-
cessed by the Kafka producer, messages could be passed
to a different topic. For example, for each commit event
being processed, the Kafka producer sends a message to
the topic Topic 1 (Fig. 1). For each pull event, the Kafka
producer can be configured to send a message to the topic
Topic 2 (Fig. 1) and for each merge event to the topic Top-
ic 3 (Fig. 1).

Identified topics are also given in the table (Table 2):

Table 2. Identified Topics

No.
 Kafka topics

Topics Example

1. Topic 1 Topic which contains only com-
mit events.

2. Topic 2 Topic which contains only pull
events.

3. Topic 3 Topic which contains only merge
events.

Kafka broker is an instance of a Kafka cluster. It re-
ceives messages from the producer, assigns an offset to
each message, and then stores those messages on a disk
[18].

Zookeeper is a site management and performance
monitoring tool in the Kafka cluster [18].

In the end, the Kafka consumer application reads data
from the topic and students’ activity analytics are calculat-
ed. Later these analytics could be presented in some web
interface such as dashboard preview.

Fig. 1. Proposed Data streaming architecture dia-
gram

An example (TABLE I) of an event, which is triggered
from a GitHub webhook, is shown in the figure (Fig. 2).

Fig. 2. Push event

Push event (Fig. 2) contains data about event id, type,
actor (in this case the student who generated the event), re-
pository (repo), GitHub organization (org), and date (cre-
ated_at) when the event is created.

Kafka's producer's task is to forward push events to a
certain topic (event_topic) as shown in Fig. 3. Once the
data arrives at the topic, the Kafka consumer reads the
data. It is possible that the consumer application, upon
reading the data, performs analytics and presents the data
through the web interface. The web interface could be in-
tegrated with Moodle LMS, but this option needs to be
investigated further.

Fig. 3. Kafka producer implementation

1352022 International conference on E-business technologies (EBT)

Fig. 4 and Fig. 5 show the web interface. Fig. 4 shows
the profile of GitHub organization, as well as a list of its
repositories. Besides that, the figure also shows repository
search by date.

Fig. 4. Repository search by date

Fig. 5 shows the review of a member’s profile with-
in GitHub organization. Some of the data are: number of
followers, number of public repositories, location, email,
company, etc.

Fig. 5. Review of a member’s profile within GitHub
organization

IV. CONCLUSION AND IMPLICATIONS

In conclusion, it is important to state that there is a pos-
sible way to implement data streaming architecture which
is based on Apache Kafka and GitHub platform for track-
ing students’ activity in higher education software devel-
opment courses.

GitHub webhook mechanism is used to integrate the
GitHub platform and Kafka producer application. Students
are working on their individual or collaborative GitHub re-
positories and thus are generating events. GitHub webhook
is triggered by some event types that are defined when cre-
ating a webhook. Upon certain GitHub events happening,
the webhook is sending the POST requests to the Kafka
producer. The producer further determines to which topic
to send the event. In the end, the Kafka consumer reads
the data from the topic and calculates analytics based on
students’ activity.

The given solution could be used as a starting point for
further consideration of this idea. The main goal of imple-
menting an architecture that relies on Apache Kafka is to
obtain the necessary analytics on students’ activity generat-
ed on the GitHub platform. The advantage of this solution

is in the speed of message processing and in the number of
messages that are processed. This provides teachers with
the latest information on students' activities in real-time.

What could be further investigated is the question of
integrating LMS (Learning Management System) such as
Moodle with the Kafka consumer application. This would
allow real-time web presentation of data that is analytical-
ly processed before. The dashboard presented in the LMS
solution could provide different analytics and previews
customized to LMS user that has access to it. Different
dashboard data could be presented to the students and to
the teachers depending on the role that is given to them.

REFERENCES

[1] Confluent Documentation, “Welcome to Event Streaming
Patterns,” https://developer.confluent.io/patterns, Apr. 19,
2022.

[2] T. Dunning and E. Friedman, Streaming architecture: new
designs using Apache Kafka and MapR streams. O’Reilly
Media, Inc., 2016.

[3] S. Chacon and B. Straub, Pro Git. Berkeley, CA: Apress,
2020. doi: 10.1007/978-1-4842-0076-6.

[4] Spring Docs, “‘Why Spring?,’” https://spring.io/why-
spring, Apr. 19, 2022.

[5] M. AlMarzouq, A. AlZaidan, and J. AlDallal, “Mining
GitHub for research and education: challenges and opportu-
nities,” International Journal of Web Information Systems,
vol. 16, no. 4. Emerald Group Holdings Ltd., pp. 451–473,
Jun. 29, 2020. doi: 10.1108/IJWIS-03-2020-0016.

[6] A. Zagalsky, J. Feliciano, M.-A. Storey, Y. Zhao, and W. Wang,
“The Emergence of GitHub as a Collaborative Platform for
Education,” Feb. 2015. doi: 10.1145/2675133.2675284.

[7] A. Milovanović, D. Stojanović, and D. Barać, “Exploring
Possibilities of Integrating Version Control Platforms in
Higher Education Through GitHub Data Analysis,” J. Wom-
en’s Entrep. Educ., vol. 2021, no. 3–4, pp. 113–133, Dec.
2021, doi: 10.28934/jwee21.34.pp113-133.

[8] M. D. Beckman, M. Çetinkaya-Rundel, N. J. Horton, C.
W. Rundel, A. J. Sullivan, and M. Tackett, “Implement-
ing Version Control With Git and GitHub as a Learn-
ing Objective in Statistics and Data Science Courses,” J.
Stat. Data Sci. Educ., vol. 29, no. sup1, Mar. 2021, doi:
10.1080/10691898.2020.1848485.

[9] A. Arroyo, M. Ramos Montes, and J. D. Segrelles Quilis, “A
Pilot Experience with Software Programming Environments
as a Service for Teaching Activities,” Appl. Sci., vol. 11, no.
1, Dec. 2020, doi: 10.3390/app11010341.

[10] J. Feliciano, M.-A. Storey, and A. Zagalsky, “Student expe-
riences using GitHub in software engineering courses,” May
2016. doi: 10.1145/2889160.2889195.

[11] M. Kleppmann, “Thinking in events: from databases to dis-
tributed collaboration software,” in Proceedings of the 15th
ACM International Conference on Distributed and Event-
based Systems, 2021, pp. 15–24.

[12] J.-H. Chang, P.-S. Chiu, and C.-F. Lai, “Implementation
and evaluation of cloud-based e-learning in agricultural
course,” Interact. Learn. Environ., pp. 1–16, Sep. 2020, doi:
10.1080/10494820.2020.1815217.

[13] J. Dizdarević and A. Jukan, “Engineering an IoT-Edge-
Cloud Computing System Architecture: Lessons Learnt
from An Undergraduate Lab Course,” in 2021 International
Conference on Computer Communications and Networks

136 Project-based Learning and E-learning

(ICCCN), 2021, pp. 1–11.
[14] S. Kul, I. Tashiev, A. Şentaş, and A. Sayar, “Event-based mi-

croservices with Apache Kafka streams: A real-time vehicle
detection system based on type, color, and speed attributes,”
IEEE Access, vol. 9, pp. 83137–83148, 2021.

[15] F. Oliveira et al., “Delivering software with agility and qual-
ity in a cloud environment,” IBM J. Res. Dev., vol. 60, no.
2–3, pp. 10–11, 2016.

[16] A. Ledeul, G. Segura Millan, A. Savulescu, B. Styczen, and
G. Switzerland, “Data streaming with Apache Kafka for
CERN Supervision, Control and Data Acquisition System
for Radiation and Environmental Protection,” 2019, doi:
10.18429/JACoW-ICALEPCS2019-MOMPL010.

[17] GitHub docs, “Webhooks and events,” https://docs.github.
com/en/developers/webhooks-and-events/about-webhooks,
May 14, 2021.

[18] Confluent Documentation, “Introduction to Kafka,” https://
developer.confluent.io/what-is-apache-kafka/, Apr. 19,
2022.

