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Abstract— Having many assignments teachers tend to 
use automated grading systems to make the grading process 
more efficient. One of the problems while using such systems 
is detecting plagiarism. Many tools for detecting plagiarism 
have been developed and are still being improved. These tools 
can detect the percentage of program similarity, but cannot 
determine if the similarity is a product of plagiarism or not. 
In this paper, it is shown that high similarities between imple-
mentations are not always a product of plagiarism. Functions 
which may have a high similarity percentage among students 
are those for which solution was provided during the course, 
coding style used during the course, and small functions with 
a small number of possible solutions. For these functions, it 
is not possible to determine whether the code was plagiarized 
only by detecting code similarity.
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I. INTRODUCTION

The outbreak of the COVID-19 pandemic forced many 
faculties to change their courses in order to better adapt 
to the new circumstances. This pushed e-learning to be-
come the dominant mean of teaching in a situation where 
physical contact is meant to be restricted. In recent years, 
many faculties had to adapt their courses to be online and 
the popularity of online courses is rapidly growing. The 
sudden increase in the volume of usage of e-learning plat-
forms also brought new problems which teaching staff had 
to consider when conducting the faculty curriculums. One 
of the mentioned problems refers to the large number of 
exams which had to be reviewed and graded. In order to 
assess many students’ programming assignments, teachers 
tend to use automated grading systems. One of the main 
problems with automated assessment is detecting plagia-
rism among the students’ assignments. 

Oxford University defines plagiarism as “present-
ing someone else’s work or ideas as your own, with or 
without their consent, by incorporating it into your work 
without full acknowledgement”.[4] It is important for the 
issue considered in this paper to emphasize that plagiarism 
refers not only to physical materials, but also to those in 
electronic form, as well as the fact that plagiarism can be 

intentional, but also unintentional. In the context of pro-
gramming assignments, students are prone to take others’ 
code and incorporate it into their assignments, often with-
out changing even a single line and without fully under-
standing it. This can be especially problematic in exams 
which are meant to test students’ problem-solving skills 
and their programming proficiency. 

Tools for automated grading of programming assign-
ments usually impose certain restrictions on the possible 
implementation of the students’ solutions. These rules are 
most often concerning function prototypes, class names 
etc. Regarding strict rules when taking a test, several is-
sues can be observed. Students must follow pre-deter-
mined blueprints while implementing the functions, which 
leaves them with little space to use their problem-solving 
skills. Types of automated tools which use static analysis 
usually expect a student to implement one of the model 
solutions and can be too restrictive [3], while tools which 
are test-based can be too strict while grading because they 
is unable to grade code which has any error.[6] It is im-
portant to estimate how strict the restrictions imposed on 
students should be, in order to be able to detect plagiarism 
correctly.

To detect plagiarism, many tools for detecting the sim-
ilarity of programs have been developed. Some of the pop-
ular tools are MOSS, JPlag, Plaggie and others.[2][5][1]  
These tools compare all submissions against each other 
and usually provide a report containing the most similar 
programs. As stated, these tools only provide information 
about the similarity of programs, without determining why 
the programs are similar.

Here will be analyzed how the similarity of programs 
depends on the given assignments. Some functions are 
common in programming or there is a limited number of 
ways to implement them. Also, in the course, students are 
taught to implement a function usually in one manner. 
When students are required to implement such functions 
in an exam, it is likely for programs to be more similar. 
These functions will be referred to as common functions. 
When students are required to use their problem-solving 
skills and solve more complex problems which may differ 
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considerably from those lectured during the course, it is 
expected that students will have more different solutions. 
These functions, which can have multiple implementa-
tions, will be referred to as non-common functions. In this 
work similarity of programs containing common functions 
as well as those containing non-common functions will be 
analyzed, in order to ascertain how assignments affect the 
usage of these tools and to prevent misusage of plagiarism 
tools. By knowing to what extent this alters results, it will 
be possible to determine which similarity percentage is ab-
normal and probably a result of plagiarism.

II. METHODOLOGY

Analysis of students' programming assignments was per-
formed with assignments from an introductory program-
ming course in C. Assignments are consisted of several 
functions to be implemented. Due to usage of automated 
grading tool, students were given prototypes of these func-
tions and type definitions for structures. Some functions 
(i. e. printing array, matrix, finding a member in an array 
or a list...) are as same or similar to those shown during 
the course, while other functions are not provided in the 
course materials.

The similarity of assignments are analysed in four ways:

1. whole programs containing all functions,
2. only functions which are considered common or simple 

functions for which similarity is predicted to be high,
3.  only functions which are considered non-common, func-

tions which haven’t been explained during the course 
and can have multiple solutions, thus lower percentage 
of similarity is predicted,

4. each function separately, which allows determining 
what kind of function had higher similarity and which 
had a lower percentage of similarity.

All analysed assignments were implemented by stu-
dents at one exam. The exam was conducted at the faculty, 
while students were monitored by teachers. Nevertheless, 
the problem analyzed here can also be applied to situations 
where exams are conducted fully online. The assignment 
consisted of seven functions which students had to imple-
ment. Two of seven functions are considered common (i.e. 
print an array, find a node in the list etc.). Three of them are 
considered non-common, meaning that solutions to these 
or similar functions were not provided in the materials 
for the course. While two remaining functions cannot be 
grouped in either of the two.

JPlag tool was used for determining program similarity 
analysis because the report shows a number of matches 
grouped by the percentage of similarity, which allows for 
determining the average percentage. In Fig. 1, a screenshot 
of JPlag’s report is shown. When comparing all submis-
sions with this tool, sensitivity must be determined. Sensi-
tivity represents the minimum number of tokens required 
to be counted as a matching section, and smaller values 
might lead to more false positives.[4] The sensitivity value 

cannot exceed the maximum number of tokens. Sensitivity 
for the whole assignments and files with more functions 
was set to the default value of 12 tokens. For files con-
taining only one function sensitivity value of 4 tokens was 
used, because some functions were short and sensitivity 
above 4 token did not successfully determine similar parts 
of code. 

In order to assess the similarity of these programs, for 
each student program were generated four types of files – a 
file containing all functions, a file containing only func-
tions which are considered common or simple, a file con-
taining only those which are non-common and a separate 
file for each function. 

Fig. 1. JPlag report

III. RESULTS

Before the analysis, students’ assignments were separat-
ed into the files as stated above. The total number of per-
formed analyses is ten:

 ■  1 for the whole assignment containing 7 functions which 
students were asked to implement. Other auxiliary func-
tions which students may have implemented were ex-
cluded,

 ■  1 for functions which are expected to be similar (com-
mon),

 ■  1 for functions which were not expected to be similar 
(non-common),

 ■  7, one for each function.
At Fig. 2 the vertical axis shows a percentage of total 

matches done, while the horizontal axis represents a group 
of similarity. For example, almost 40% of matches done 
with files which contained only common functions, have 
between 40 and 50% of similarity. In Table I, number of 
comparisons in each similarity group is shown, but results 
were separated in five groups instead of default ten. As it 
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can be seen from Fig. 2 and Table 1, the similarity tends 
to be over 50%. For non-common functions, the similarity 
tends to be lower than 20%. Overall similarity tends to be 
lower than 30%. Meaning if the assignment consisted only 
of functions for which solutions are provided in materials 
or during the course, a higher similarity percentage can be 
expected. This similarity, however, is not necessarily the 
consequence of plagiarism since the common functions 
can be implemented in a limited number of ways (as ex-
plained before), so it is not possible to determine whether 
the code was plagiarised or not at all. This may affect the 
ability to use tools for determining plagiarism. On the oth-
er hand, assignments which require better understanding 
and problem-solving skills and for which many different 

solutions can be constructed make preventing and detect-
ing plagiarism much easier, but also can lead to a high-
er number of failed assignments, since the non-common 
functions tend to be more difficult for students. It is also 
observed that a lower number of students have implement-
ed these functions.

Similarity for whole assignments shows that for this 
particular exam plagiarised assignments can easily be 
observed, with a high percentage of similarity. But if the 
assignment contained only common functions, plagiarised 
assignments would not be easily detected.

TABLE I. ASSIGMENTS SIMILARITY REPORT

Similarity %
Assignments comparisons

Expected to be similar Expected not to be similar Whole assignments
Number Percentage Number Percentage Number Percentage

0%–20% 70 9% 504 72% 267 36%
20%–40% 73 9% 178 25% 381 51%
40%–60% 357 46% 20 3% 88 12%
60%–80% 116 15% 1 0% 5 1%
80%–100% 70 9% 0 0% 0 0%

Fig. 2. Similarity report between files with all func-
tions, files only with functions which are expected to be 
similar and between files only with functions which are 

not expected to be similar

In Fig. 3 and in Table II, the percentage for two func-
tions which are expected to be similar is shown. The per-
centage of comparisons for each similarity level is shown. 
Functions names are:

 ■  F1 and F2 – common functions (e. g. printMatrix, add-
NewNode…),

 ■  F4, F5, F6 – non-common functions, functions previ-
ously unfamiliar to students (e. g. startGame, addMove, 
transformList…)

 ■  F3, F7 – cannot be grouped in one of the previous two 
groups.

 As it can be seen, the average percentage tends to be 
higher among common functions. For example, almost 
90% of matches had a 90% of similarity of function for 
printing matrix (F1). For function F2, over 75% of total 
matches have similarities over 60%. For functions F4, F5, 
and F6, it can be observed that none of the functions has 
a high percentage of similarity matches (over 60%). Some 
of the functions like F5 and F4 have over 78% and over 
40% of matches below 40% of similarity, where half of the 
comparisons for function F5 have similarity below 20%.  

TABLE II. ASSIGMENTS SIMILARITY REPORT FOR EACH FUNCTION (%)

Similarity %
Comparisons of functions (%)

F1 F2 F3 F4 F5 F6 F7

0%–20% 0% 4% 9% 15% 50% 4% 23%

20%–40% 0% 10% 27% 38% 29% 17% 12%

40%–60% 1% 8% 26% 26% 16% 31% 26%

60%–80% 0% 30% 21% 19% 5% 30% 20%

80%–100% 99% 48% 17% 3% 0% 6% 18%
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Fig. 3. Similarity between common functions

In Fig. 4, the number of percentages for three of the 
non-common functions is shown. As it can be seen, one of 
the functions is not similar at all to other implementations 
in almost 40% of the comparisons. 

Fig. 4. Similarity between non-common functions

IV. DISCUSSION

When given functions for which solutions were given 
in materials or explained during the course, or similar, a 
higher percentage of similarity is expected. Also, for func-
tions which have a limited number of possible implemen-
tations, we can expect the similarity to be higher. In this 
case, the high percentage of similarity does not necessarily 
mean that there had been plagiarism among the students' 
works. Plagiarism is harder to detect in this case.

With functions for which can be given more than one 
solution and for which there is not a solution provided dur-
ing the course, a lower percentage of similarity is expect-
ed. For these kinds of functions, it is easier to determine 
whether implementations were a result of plagiarism. In 
this case, a high percentage of similarity between students’ 
works usually means that they had plagiarised.

When a number of submissions are compared it is obvi-
ous that those new functions, which are not common, have 
a lower number of submissions. Also, implementing com-
mon functions like printing or reading from standard input 
cannot be avoided, same as simple functions for which 
students may give similar solutions. Teachers should be 
aware that the percentage of similarity depends on the 
earlier students’ experience of solving those functions. 
When functions are the same as those presented during the 

course, a higher similarity is observed and it is hard to de-
termine if this similarity is the consequence of plagiarism 
or the student’s familiarity with the problem being solved.  

In the mentioned tools, there is a possibility of exclud-
ing such common parts of the programs from the report, 
but when the programs mainly consist of simple or already 
familiar functions, the usability of these tools is question-
able. 

When given an assignment containing several functions 
which are familiar and several which could be considered 
non-common, tools for detecting plagiarism are effective 
in determining the assignments which contain plagiarism 
to a large degree, but smaller functions or partially plagia-
rized code may remain undetected.

Some tools for plagiarism detection such as MOSS, 
have ways to avoid grading common functions or shared 
code as plagiarism. MOSS enables the declaration of base 
files which e. g. could be provided by teachers. In addi-
tion, MOSS enables declaring a maximum number of as-
signments before declaring a part of code as common. For 
number n, if a code appears in n or more assignments, that 
part of the code isn’t considered as part of plagiarized code. 
One of the cons of using MOSS is that it is an online-only 
tool which generates HTML response which isn’t consid-
ered safe in terms of students’ privacy. For this research, 
MOSS doesn’t provide an aggregated report, making it 
troublesome to assess a normal percentage of similarity 
and its distribution.

V. CONCLUSION AND FUTURE WORK

In this paper, it has been shown how a previous knowl-
edge of possible implementations for functions can result 
in similarly implemented solutions among the students. 
But also, using common functions is often necessary while 
implementing programs, and can’t be avoided. With us-
ing programs such as JPlag, assignments which contain 
plagiarized code should be obvious, depending mainly on 
assignment requests.

Plagiarism tools and tools for automated grading are 
being used for a long time and improved through the years. 
While automated grading brings many benefits to the pro-
cess of grading, it also limits the number of possible solu-
tions for the assignments, making it harder to determine 
whether a similar code is a result of plagiarism or a coin-
cidence. 

When designing the assignments, teachers should have 
in mind not only the functions for which solutions are 
shown during the course, but should also consider how the 
complexity of the function affects the same issue. The sim-
pler the function, the higher similarity should be expected, 
because a limited number of solutions are possible, while 
students are not motivated to implement the most creative 
solution, but only a working solution. But if functions are 
too complex, automated test tools could be too strict in 
terms of grading, not being able to partially grade code.



1532022 International conference on E-business technologies (EBT)

REFERENCES

[1] Ahtiainen, A., Surakka, S., & Rahikainen, M. (2006). Plag-
gie. Proceedings of the 6th Baltic Sea Conference on Com-
puting Education Research Koli Calling 2006 - Baltic Sea 
’06. https://doi.org/10.1145/1315803.1315831

[2] Alex Aiken. MOSS (Measure Of Software Similarity): 
A System for Detecting Software Similarity. (n.d.). Stan-
ford. Retrieved May 12, 2022, from https://theory.stanford.
edu/~aiken/moss/

[3] K. Ala-Mutka. A survey of automated assessment approach-
es for programming assignments. Computer Science Educa-
tion, 15(2):83–102, 2005.

[4] Plagiarism | University of Oxford. (2022). Plagiarism. 
https://www.ox.ac.uk/students/academic/guidance/skills/
plagiarism

[5] Prechelt, L., Malpohl, G., & Phlippsen, M. (2000, March). 
JPlag: Finding plagiarisms among a set of programs. https://
page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf

[6] Stojanović, T., & Lazarević, S. (2021). Automated grading 
assignments in programming – advantages, problems and 
effects on learning. E-Business Technologies Conference 
Proceedings, 1(1), 100–104. Retrieved from https://ebt.rs/
journals/index.php/conf-proc/article/view/77


