
1492022 International conference on E-business technologies (EBT)

Analysing the similarity of students’ programming
assignments

Sasa D. Lazarevic

Department of software engineering,
Faculty of organizational sciences

University of Belgrade
Belgrade, Serbia

sasa.lazarevic@fon.bg.ac.rs

Tatjana Stojanovic

Department of software engineering,
Faculty of organizational sciences

University of Belgrade
Belgrade, Serbia

tatjana.stojanovic@fon.bg.ac.rs,
0000-0001-7191-6444

Abstract— Having many assignments teachers tend to
use automated grading systems to make the grading process
more efficient. One of the problems while using such systems
is detecting plagiarism. Many tools for detecting plagiarism
have been developed and are still being improved. These tools
can detect the percentage of program similarity, but cannot
determine if the similarity is a product of plagiarism or not.
In this paper, it is shown that high similarities between imple-
mentations are not always a product of plagiarism. Functions
which may have a high similarity percentage among students
are those for which solution was provided during the course,
coding style used during the course, and small functions with
a small number of possible solutions. For these functions, it
is not possible to determine whether the code was plagiarized
only by detecting code similarity.

Keywords— plagiarism, plagiarism detection, code simi-
larity, automated grading systems

I. INTRODUCTION

The outbreak of the COVID-19 pandemic forced many
faculties to change their courses in order to better adapt
to the new circumstances. This pushed e-learning to be-
come the dominant mean of teaching in a situation where
physical contact is meant to be restricted. In recent years,
many faculties had to adapt their courses to be online and
the popularity of online courses is rapidly growing. The
sudden increase in the volume of usage of e-learning plat-
forms also brought new problems which teaching staff had
to consider when conducting the faculty curriculums. One
of the mentioned problems refers to the large number of
exams which had to be reviewed and graded. In order to
assess many students’ programming assignments, teachers
tend to use automated grading systems. One of the main
problems with automated assessment is detecting plagia-
rism among the students’ assignments.

Oxford University defines plagiarism as “present-
ing someone else’s work or ideas as your own, with or
without their consent, by incorporating it into your work
without full acknowledgement”.[4] It is important for the
issue considered in this paper to emphasize that plagiarism
refers not only to physical materials, but also to those in
electronic form, as well as the fact that plagiarism can be

intentional, but also unintentional. In the context of pro-
gramming assignments, students are prone to take others’
code and incorporate it into their assignments, often with-
out changing even a single line and without fully under-
standing it. This can be especially problematic in exams
which are meant to test students’ problem-solving skills
and their programming proficiency.

Tools for automated grading of programming assign-
ments usually impose certain restrictions on the possible
implementation of the students’ solutions. These rules are
most often concerning function prototypes, class names
etc. Regarding strict rules when taking a test, several is-
sues can be observed. Students must follow pre-deter-
mined blueprints while implementing the functions, which
leaves them with little space to use their problem-solving
skills. Types of automated tools which use static analysis
usually expect a student to implement one of the model
solutions and can be too restrictive [3], while tools which
are test-based can be too strict while grading because they
is unable to grade code which has any error.[6] It is im-
portant to estimate how strict the restrictions imposed on
students should be, in order to be able to detect plagiarism
correctly.

To detect plagiarism, many tools for detecting the sim-
ilarity of programs have been developed. Some of the pop-
ular tools are MOSS, JPlag, Plaggie and others.[2][5][1]
These tools compare all submissions against each other
and usually provide a report containing the most similar
programs. As stated, these tools only provide information
about the similarity of programs, without determining why
the programs are similar.

Here will be analyzed how the similarity of programs
depends on the given assignments. Some functions are
common in programming or there is a limited number of
ways to implement them. Also, in the course, students are
taught to implement a function usually in one manner.
When students are required to implement such functions
in an exam, it is likely for programs to be more similar.
These functions will be referred to as common functions.
When students are required to use their problem-solving
skills and solve more complex problems which may differ

150 Project-based Learning and E-learning

considerably from those lectured during the course, it is
expected that students will have more different solutions.
These functions, which can have multiple implementa-
tions, will be referred to as non-common functions. In this
work similarity of programs containing common functions
as well as those containing non-common functions will be
analyzed, in order to ascertain how assignments affect the
usage of these tools and to prevent misusage of plagiarism
tools. By knowing to what extent this alters results, it will
be possible to determine which similarity percentage is ab-
normal and probably a result of plagiarism.

II. METHODOLOGY

Analysis of students' programming assignments was per-
formed with assignments from an introductory program-
ming course in C. Assignments are consisted of several
functions to be implemented. Due to usage of automated
grading tool, students were given prototypes of these func-
tions and type definitions for structures. Some functions
(i. e. printing array, matrix, finding a member in an array
or a list...) are as same or similar to those shown during
the course, while other functions are not provided in the
course materials.

The similarity of assignments are analysed in four ways:

1. whole programs containing all functions,
2. only functions which are considered common or simple

functions for which similarity is predicted to be high,
3. only functions which are considered non-common, func-

tions which haven’t been explained during the course
and can have multiple solutions, thus lower percentage
of similarity is predicted,

4. each function separately, which allows determining
what kind of function had higher similarity and which
had a lower percentage of similarity.

All analysed assignments were implemented by stu-
dents at one exam. The exam was conducted at the faculty,
while students were monitored by teachers. Nevertheless,
the problem analyzed here can also be applied to situations
where exams are conducted fully online. The assignment
consisted of seven functions which students had to imple-
ment. Two of seven functions are considered common (i.e.
print an array, find a node in the list etc.). Three of them are
considered non-common, meaning that solutions to these
or similar functions were not provided in the materials
for the course. While two remaining functions cannot be
grouped in either of the two.

JPlag tool was used for determining program similarity
analysis because the report shows a number of matches
grouped by the percentage of similarity, which allows for
determining the average percentage. In Fig. 1, a screenshot
of JPlag’s report is shown. When comparing all submis-
sions with this tool, sensitivity must be determined. Sensi-
tivity represents the minimum number of tokens required
to be counted as a matching section, and smaller values
might lead to more false positives.[4] The sensitivity value

cannot exceed the maximum number of tokens. Sensitivity
for the whole assignments and files with more functions
was set to the default value of 12 tokens. For files con-
taining only one function sensitivity value of 4 tokens was
used, because some functions were short and sensitivity
above 4 token did not successfully determine similar parts
of code.

In order to assess the similarity of these programs, for
each student program were generated four types of files – a
file containing all functions, a file containing only func-
tions which are considered common or simple, a file con-
taining only those which are non-common and a separate
file for each function.

Fig. 1. JPlag report

III. RESULTS

Before the analysis, students’ assignments were separat-
ed into the files as stated above. The total number of per-
formed analyses is ten:

 ■ 1 for the whole assignment containing 7 functions which
students were asked to implement. Other auxiliary func-
tions which students may have implemented were ex-
cluded,

 ■ 1 for functions which are expected to be similar (com-
mon),

 ■ 1 for functions which were not expected to be similar
(non-common),

 ■ 7, one for each function.
At Fig. 2 the vertical axis shows a percentage of total

matches done, while the horizontal axis represents a group
of similarity. For example, almost 40% of matches done
with files which contained only common functions, have
between 40 and 50% of similarity. In Table I, number of
comparisons in each similarity group is shown, but results
were separated in five groups instead of default ten. As it

1512022 International conference on E-business technologies (EBT)

can be seen from Fig. 2 and Table 1, the similarity tends
to be over 50%. For non-common functions, the similarity
tends to be lower than 20%. Overall similarity tends to be
lower than 30%. Meaning if the assignment consisted only
of functions for which solutions are provided in materials
or during the course, a higher similarity percentage can be
expected. This similarity, however, is not necessarily the
consequence of plagiarism since the common functions
can be implemented in a limited number of ways (as ex-
plained before), so it is not possible to determine whether
the code was plagiarised or not at all. This may affect the
ability to use tools for determining plagiarism. On the oth-
er hand, assignments which require better understanding
and problem-solving skills and for which many different

solutions can be constructed make preventing and detect-
ing plagiarism much easier, but also can lead to a high-
er number of failed assignments, since the non-common
functions tend to be more difficult for students. It is also
observed that a lower number of students have implement-
ed these functions.

Similarity for whole assignments shows that for this
particular exam plagiarised assignments can easily be
observed, with a high percentage of similarity. But if the
assignment contained only common functions, plagiarised
assignments would not be easily detected.

TABLE I. ASSIGMENTS SIMILARITY REPORT

Similarity %
Assignments comparisons

Expected to be similar Expected not to be similar Whole assignments
Number Percentage Number Percentage Number Percentage

0%–20% 70 9% 504 72% 267 36%
20%–40% 73 9% 178 25% 381 51%
40%–60% 357 46% 20 3% 88 12%
60%–80% 116 15% 1 0% 5 1%
80%–100% 70 9% 0 0% 0 0%

Fig. 2. Similarity report between files with all func-
tions, files only with functions which are expected to be
similar and between files only with functions which are

not expected to be similar

In Fig. 3 and in Table II, the percentage for two func-
tions which are expected to be similar is shown. The per-
centage of comparisons for each similarity level is shown.
Functions names are:

 ■ F1 and F2 – common functions (e. g. printMatrix, add-
NewNode…),

 ■ F4, F5, F6 – non-common functions, functions previ-
ously unfamiliar to students (e. g. startGame, addMove,
transformList…)

 ■ F3, F7 – cannot be grouped in one of the previous two
groups.

 As it can be seen, the average percentage tends to be
higher among common functions. For example, almost
90% of matches had a 90% of similarity of function for
printing matrix (F1). For function F2, over 75% of total
matches have similarities over 60%. For functions F4, F5,
and F6, it can be observed that none of the functions has
a high percentage of similarity matches (over 60%). Some
of the functions like F5 and F4 have over 78% and over
40% of matches below 40% of similarity, where half of the
comparisons for function F5 have similarity below 20%.

TABLE II. ASSIGMENTS SIMILARITY REPORT FOR EACH FUNCTION (%)

Similarity %
Comparisons of functions (%)

F1 F2 F3 F4 F5 F6 F7

0%–20% 0% 4% 9% 15% 50% 4% 23%

20%–40% 0% 10% 27% 38% 29% 17% 12%

40%–60% 1% 8% 26% 26% 16% 31% 26%

60%–80% 0% 30% 21% 19% 5% 30% 20%

80%–100% 99% 48% 17% 3% 0% 6% 18%

152 Project-based Learning and E-learning

Fig. 3. Similarity between common functions

In Fig. 4, the number of percentages for three of the
non-common functions is shown. As it can be seen, one of
the functions is not similar at all to other implementations
in almost 40% of the comparisons.

Fig. 4. Similarity between non-common functions

IV. DISCUSSION

When given functions for which solutions were given
in materials or explained during the course, or similar, a
higher percentage of similarity is expected. Also, for func-
tions which have a limited number of possible implemen-
tations, we can expect the similarity to be higher. In this
case, the high percentage of similarity does not necessarily
mean that there had been plagiarism among the students'
works. Plagiarism is harder to detect in this case.

With functions for which can be given more than one
solution and for which there is not a solution provided dur-
ing the course, a lower percentage of similarity is expect-
ed. For these kinds of functions, it is easier to determine
whether implementations were a result of plagiarism. In
this case, a high percentage of similarity between students’
works usually means that they had plagiarised.

When a number of submissions are compared it is obvi-
ous that those new functions, which are not common, have
a lower number of submissions. Also, implementing com-
mon functions like printing or reading from standard input
cannot be avoided, same as simple functions for which
students may give similar solutions. Teachers should be
aware that the percentage of similarity depends on the
earlier students’ experience of solving those functions.
When functions are the same as those presented during the

course, a higher similarity is observed and it is hard to de-
termine if this similarity is the consequence of plagiarism
or the student’s familiarity with the problem being solved.

In the mentioned tools, there is a possibility of exclud-
ing such common parts of the programs from the report,
but when the programs mainly consist of simple or already
familiar functions, the usability of these tools is question-
able.

When given an assignment containing several functions
which are familiar and several which could be considered
non-common, tools for detecting plagiarism are effective
in determining the assignments which contain plagiarism
to a large degree, but smaller functions or partially plagia-
rized code may remain undetected.

Some tools for plagiarism detection such as MOSS,
have ways to avoid grading common functions or shared
code as plagiarism. MOSS enables the declaration of base
files which e. g. could be provided by teachers. In addi-
tion, MOSS enables declaring a maximum number of as-
signments before declaring a part of code as common. For
number n, if a code appears in n or more assignments, that
part of the code isn’t considered as part of plagiarized code.
One of the cons of using MOSS is that it is an online-only
tool which generates HTML response which isn’t consid-
ered safe in terms of students’ privacy. For this research,
MOSS doesn’t provide an aggregated report, making it
troublesome to assess a normal percentage of similarity
and its distribution.

V. CONCLUSION AND FUTURE WORK

In this paper, it has been shown how a previous knowl-
edge of possible implementations for functions can result
in similarly implemented solutions among the students.
But also, using common functions is often necessary while
implementing programs, and can’t be avoided. With us-
ing programs such as JPlag, assignments which contain
plagiarized code should be obvious, depending mainly on
assignment requests.

Plagiarism tools and tools for automated grading are
being used for a long time and improved through the years.
While automated grading brings many benefits to the pro-
cess of grading, it also limits the number of possible solu-
tions for the assignments, making it harder to determine
whether a similar code is a result of plagiarism or a coin-
cidence.

When designing the assignments, teachers should have
in mind not only the functions for which solutions are
shown during the course, but should also consider how the
complexity of the function affects the same issue. The sim-
pler the function, the higher similarity should be expected,
because a limited number of solutions are possible, while
students are not motivated to implement the most creative
solution, but only a working solution. But if functions are
too complex, automated test tools could be too strict in
terms of grading, not being able to partially grade code.

1532022 International conference on E-business technologies (EBT)

REFERENCES

[1] Ahtiainen, A., Surakka, S., & Rahikainen, M. (2006). Plag-
gie. Proceedings of the 6th Baltic Sea Conference on Com-
puting Education Research Koli Calling 2006 - Baltic Sea
’06. https://doi.org/10.1145/1315803.1315831

[2] Alex Aiken. MOSS (Measure Of Software Similarity):
A System for Detecting Software Similarity. (n.d.). Stan-
ford. Retrieved May 12, 2022, from https://theory.stanford.
edu/~aiken/moss/

[3] K. Ala-Mutka. A survey of automated assessment approach-
es for programming assignments. Computer Science Educa-
tion, 15(2):83–102, 2005.

[4] Plagiarism | University of Oxford. (2022). Plagiarism.
https://www.ox.ac.uk/students/academic/guidance/skills/
plagiarism

[5] Prechelt, L., Malpohl, G., & Phlippsen, M. (2000, March).
JPlag: Finding plagiarisms among a set of programs. https://
page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf

[6] Stojanović, T., & Lazarević, S. (2021). Automated grading
assignments in programming – advantages, problems and
effects on learning. E-Business Technologies Conference
Proceedings, 1(1), 100–104. Retrieved from https://ebt.rs/
journals/index.php/conf-proc/article/view/77

