
612022 International conference on E-business technologies (EBT)

Designing a data streaming infrastructure for a
smart city crowdsensing platform
Aleksa Miletić

Faculty of Organisational Sciences
University of Belgrade

Belgrade, Serbia
aleksa.miletic@elab.rs
0000-0001-8940-9897

Petar Lukovac

Faculty of Organisational Sciences
University of Belgrade

Belgrade, Serbia
petar.lukovac@elab.rs
0000-0003-4561-8886

Božidar Radenković

Faculty of Organisational Sciences
University of Belgrade

Belgrade, Serbia
boza@elab.rs

0000-0003-2111-7788

Abstract— This article considers the problem of design-
ing data streaming infrastructures for crowdsensing systems.
The goal is to propose an infrastructure that would provide a
scalable and seamless collection of various data in smart city,
such as noise, vibrations, air quality, citizens’ health param-
eters, etc., streaming collected data into the cloud infrastruc-
ture, and preparing it for further analysis. The paper focuses
on the aspects of modelling data streams, and the implemen-
tation using the Apache Kafka software. The prototype of the
proposed system is implemented within the private cloud in-
frastructure of the Department of e-business, Faculty of Or-
ganizational Sciences.

Keywords - data streaming, crowdsensing, smart city, IoT

I. INTRODUCTION

Streaming data can be beneficial to any industry that
deals with big data. It is used to integrate, process, filter,
analyze and react to collected data as it is received in re-
al-time. Today, it is used in many applications such as on-
line-shopping, recommendations on streaming services,
fraud detection etc.

Data stream refers to an ordered sequence of data,
which is unbounded and continuously updated. It typically
stands for a continuous transfer of a large quantity of small
data, from a data producer to a data consumer. Data in data
streams are processed sequentially and incrementally, one
at a time or in small batches. Processed data streams are
then used for further analysis, using various algorithms
[1].

Data streams can be found in various business activi-
ties and domains, including banking, commerce, produc-
tion, healthcare etc. A specific importance was put on data
stremaing architectures with the development of Internet of
things, since sensors typically generate numerous streams
of data, which are then transfered to a cloud storage [9].

Comparing to traditional batch processing, data stream-
ing approaches provide data in near real time, allowing for
real-time analytics and quicker insights. Using streams,

data can be frequently updated, and the users can be noti-
fied about the changes of interest. Unlike the traditional re-
quest-response paradigm, it focuses on push notifications
to users, without explicits users’ requests.

The aim of this paper is to point out the problems that
exist when designing data streams, to give certain guide-
lines on how to solve these problems, and to define system
architecture for measuring noise, vibrations in traffic, al-
lergens, and air quality in smart cities.

II. THEORETICAL BACKGROUND

Data stream is an abstraction representing an infinite
and ever-growing dataset. The dataset is infinite and ev-
er-growing because over time, new records keep arriving
[4].

Event streams are arranged. The events have an or-
der in which they are performed, but it is difficult to an-
ticipate which event will perform next. On the example
of crowdsensing system about the amount of allergens in
the air, the easiest scenario is to show harmfulness of air
in a certain part of the city, but there is possibility for the
user to enter their chronic and seasonal diseases and to be
notified if they are near, for them, harmful part of the city.
The difference between event streams and database tables
is that the database tables are considered unordered, and
the „order by” clause is not part of the relational model,
but had been added to make data easier to display [4].

Immutable data records. Once events are triggered,
they can’t be changed anymore. If the user updates their
chronic and seasonal diseases, the old ones won’t be de-
leted. The difference between database tables and event
streams is that we can update or delete data in the database
tables, but they are considered as an additional transac-
tions. Instead, we can store transactions in a data stream
[4].

Event streams are replayable. This is a good feature
of event streams because there would be a problem if there

Branislav Jovanić

Intitute of Physics
University of Belgrade

Belgrade, Serbia
brana@elab.rs

0000-0003-4130-1638

62 IoT and Smart Environments

are events which occurred a few months earlier, or if we
manage to change it, there would be no record that that
event ever happened before [4].

The data that are sent through the stream are different
from system to system. The size of events that are sent
through stream can be very small and can be huge. Data
that are sent can be key-value pairs, JSON structures etc.
In Kafka there are topics which are used to organize mes-
sages and each topic has unique name. There are producers
which send data to the topic, and then they are redirected
to subscribed consumers. Producer is an application that
represents the source of the data stream. Consumers are
applications that consume records from Kafka cluster.

III. DATA STREAM MODELLING

Apache Kafka is a data streaming platform whose abil-
ity is to process several trillion requests in one day [6]. To-
day, Kafka is used for streaming data in real-time, storing
a large amount of data, and analyzing the same data. The
advantage of the Apache Kafka tool is the ability to store
data on Kafka, which can actively monitor the transaction
execution process. Unlike the MQTT or AMQ protocol,
Apache Kafka allows users to receive messages that are
important to them. In this case, a user will receive data
only when he wants to list them.

Topics are like folders in a filesystem, and events are
files in that folder. Kafka is a multi-producer and mul-
ti-subscriber, so it can receive data from zero or more pro-
ducers and send it to zero or more consumers. Data from a
topic can be read whenever there is a need for it. Also, the
data is not deleted immediately after use, but a certain pe-
riod is defined in which data is stored, and after that period
it is removed. Kafka's performance is effectively constant
with respect to data size, so storing data for a long time is
perfectly fine [7].

The main question in topic design is: How do we de-
cide on which topic to send the next event? If topics aren't
designed in an appropriate way it can later bring us to rede-
sign topics, that is creating a topic model from the begin-
ning. Bellow will be described good practices for creating
topics.

As mentioned, Kafka is a platform for streaming data,
and one of the main things which need to be designed
in Kafka are topics. Topics are an ordered collection of
events that are stored in a durable way, which means they
are written to disk and they are replicated. There are prob-
lems in topic design: whether different types of data should
be put into one topic, whether a couple of topics can be
merged if they are logically connected, how to protect sen-
sitive data sent to a topic, etc. The answers to these and
some similar questions will be given below.

According to Martin Grotzke and Daniel Orner, Kaf-
ka topics should be designed as follows [2][3]:Cases for
which topics should be designed:

 ■ Topics can be separated by domains and subdomains to
which events relate. If two events are logically different
then they should be put in different topics. When a topic
is created, there should also be created object schema,
and only objects which satisfy that schema could go
through the topic. Each topic should represent one type
to work with. Meaning is lost if there are mixed types
in one topic.

 ■ If there is a strong connection between two events,
should consider whether they can go to the same topic.
Also, if there is an exact order in which events should be
called, then they should go in the same topic.

 ■ If we withdraw some data, among which there is sen-
sitive data of some user, that data should be separated
from the others, and therefore a new topic should be cre-
ated in which they would be placed.

 ■ Frequently triggered events (e.g. a sensor that sends data
multiple times per second) should be placed in special
topics [2]. In most cases, you’ll want to have exactly
one producer and one or more consumers. If more ser-
vices need to send the same kind of data, that’s a clue
that your service boundaries are not well-drawn, or that
one service should be talking to the other one in some
different way instead. This applies to event, entity, and
response topics.

 ■ In some cases, you should have the opposite: one or
more producers and exactly one consumer. This applies
to request topics, ensuring only one system processes
each request. You can think of it as a funnel instead of
a branch-out.

 ■ Standardize topic names to make it simple when creating
new ones. One possible format is {BoundedContext}.
{Subdomain}. For example: Noise.NoiseCreatedEvent,
Allergens.ParticleSize, AirQuality.Temperature.

Maximal number of topics is infinite. Minimal number
of topics should be near number of different things which
are send from producer to consumer.

Table 1, relationship between few and a lot of topics[5]

Less topics More topics

Consumer may have to filter
messages

Consumers can read only
topics they care about

Less processing overhead
of managining masters and

consumers

Slower restarts, other pro-
cessing overheads

Less configuration to manage More flexibility in configu-
ration

Streaming is becoming more and more popular be-
cause it is not necessary to store a large amount of data,
but it can be quickly analyzed and gain insight into the
data. The most important thing is to determine the current
data, whether it is 2 minutes, 1 day, or maybe a certain
number of events (100). The time period we need is called
windowing.

There are methods which define length of window [10]:

632022 International conference on E-business technologies (EBT)

 ■ Tumbling window - these are windows that have a clear
duration and are constant. This means that after the com-
pletion of one, the next one continues.

 ■ Sliding window - these are windows that are timed, but
it is possible to overlap multiple windows.

 ■ Session window - does not depend on the period, but
on the activity of the event in a particular period. This
means that certain windows have a shorter period if the
time flow is longer.

 ■ Events can be selected by occurrence time:
 ■ Event-time represents the time of occurrence of the
event.

 ■ Processing-time represents the time when the event was
processed by the system

There must be a certain period of time that would in-
dicate that certain data is current and that is useful for the
system. If a certain event is delayed when arriving in the
system by more than the defined value, it will not be in-
cluded in the set of events for processing. This time period
is called the watermark [10].

IV. DATA STREMING INFRASTRUCTURE FOR THE
SMART CITY CROWDSENSING SYSTEM

The goal of the system proposed in this paper is to pro-
vide an adequate data streaming infrastructure that would
serve for crowdsensing data in the smart city (Figure 1).
The proposed system can support a large number of IoT
subsystems as producers, as well as a large number of
various consumer applications. Within this paper, only a
few examples of IoT subsystems are presented: measur-
ing noise, measuring vibrations, measuring air quality, and
measuring allergens.

Within the proposed system, measurements are done
using crowdsensing, where a large number of partici-
pants collect and provide data. Collected data is sent to
the cloud, and accepted using an ingress service. Collected
data streams are then transferred to the back end of the
system, where they are being transformed and prepared for
further analysis. Processed and analyzed data are delivered
to consumers through various delivery models (pull, push)
and through various applications. Client applications are
connected to the system through API of access services.

Figure 1 – The overview of the proposed system

The main components of the proposed system are [8]:

 ■ IoT devices are used for collecting data from sensors. If
needed and possible, data measured from each sensor is
processed and transformed at the edge device, and then
sent to the cloud.

 ■ Mobile applications for crowdsensing are used to
collect measurements using participants’ mobile de-
vices. They provide collecting data such as noise at
micro-locations, vibrations in public transportation
and traffic, etc.

 ■ Data streaming infrastructure includes several com-
ponents: 1) ingress services for every device with dif-
ferent measurements, i.e. a service that receives data
from IoT systems and mobile applications; 2) stream
processing cluster, which enables the transformation
of data streams; 3) access services for every type of
measurement which enables communication with
consumers of the data, i.e. applications that use the
data streams.

 ■ Data analytics infrastructure provides services for
real-time analytics. It enables the implementation of
advanced analyses, machine learning techniques, or
other predictive models.

 ■ Consumer applications include various mobile, smart
watch, or other applications that consume crowd-
sensed data in any form. They usually present data us-
ing adequate visualizations and enable notifications.

V. IMPLEMENTATION DETAILS

Table 2 represents Kafka topics used for implementing
the proposed system. Within each topic, data is streamed in
a form of key-value pairs.

Table 2. Specification of topics within the proposed system

Topic Description

raw_noise_
measurements

The topic for accepting traffic measurement
data. The following data will be stored: de-
vices that measure noise volume (sensors -
name and type of sensor and mobile phone
- mac address) - latitude and longitude, user
from whose device noise is measured - us-
ername, name, surname, measured frequen-
cy - volume frequencies, municipality - the
name of the municipality

raw_noise_
measurements
_anonymized

Anonymous data when measuring traffic
noise

average_noise_
time_location

Calculations of averages for a location at
selected time periods; a topic is created for
each combination of predefined time slots
(daily, hourly) and selected locations of in-
terest.

max_noise_
time_location

Maximal measured values for selected time
periods at a location.

64 IoT and Smart Environments

raw_vibration_
measurements

The topic for accepting data from traffic vi-
bration measurements. The following data
will be stored: devices that measure vibra-
tions (sensors - name and type of sensor
and mobile phone - mac address) - latitude
and longitude, a user from whose device the
vibration is measured - username, name,
surname, measured frequency - frequency,
municipality - the name of the municipality

raw_vibration_
measurements
_anonymized

Anonymous data when measuring vibra-
tions in traffic.

average_vibra-
tion_time_lo-

cation

Calculations of averages for a location at
selected time periods; a topic is created for
each combination of predefined time slots
(daily, hourly) and selected locations of in-
terest.

max_vibra-
tion_time_lo-

cation

Maximal measured values for selected time
periods at a location.

raw_airQual-
ity_measure-

ments

The topic for accepting air quality measure-
ments. The following data will be stored:
devices that measure air quality (sensors -
name and type sensor) - latitude and longi-
tude, air quality measured for a short period
of time, municipality - the name of the mu-
nicipality

raw_airQual-
ity_measure-

ments_an-
onymized

Anonymous data when measuring air qual-
ity.

average_
airQuality_

time_location

Calculations of averages for a location at
selected time periods; a topic is created for
each combination of predefined time slots
(daily, hourly) and selected locations of in-
terest.

max_airQuali-
ty_time_loca-

tion

Maximal measured values for selected time
periods at a location.

raw_allergens_
measurements

The topic for accepting allergen measure-
ments. The following data will be kept:
place where measured - name, address,
latitude and longitude, weather forecast
for that place - temperature, humidity, rain
level, and cloud level, wind type - name,
direction, and strength of wind blowing, de-
vice for measuring allergens - name, type
of particle measured by the device - name,
a measurement performed by the device -
measured value.

raw_allergens_
measurements_

anonymized
Anonymous allergen measurement data.

average_aller-
gens_time_lo-

cation

Calculations of averages for a location at
selected time periods; a topic is created for
each combination of predefined time slots
(daily, hourly) and selected locations of in-
terest.

max_aller-
gens_time_lo-

cation

Maximal measured values for selected time
periods at a location.

VI. CONCLUSION

In this paper, the focus is on defining the architecture
when creating Kafka topics. The article indicates the most
common mistakes and the most common problems that
developers encounter when creating Kafka topics and is
pointed out how to prevent these problems. It also explains
what data streaming is and the focus is on Apache Kafka
which is one of the most used tools for data streaming, as
well as the key concepts of Apache Kafka: consumer, pro-
ducer, watermarking, and windowing.

The plan of future development is the development of
an IoT crowdsensing system based on data streaming ar-
chitecture, using Apache Kafka, and based on the model
presented in this paper. Sensor data will also be collected
and sent via the MQTT protocol to Apache Kafka, where
it will be processed and displayed to users in mobile ap-
plications.

REFERENCES

[1] Apache Kafka (2017) [Online] https://kafka.apache.org/10/
documentation/streams/core-concepts.html

[2] M. Grotzke, “Kafka Topic Design Guidelines”, https://in-
oio.de/blog/2021/05/21/kafka-topic-design-guidelines/, 21.
May 2021

[3] D. Orner “Schema and Topic Design in Event-Driven Sys-
tems (featuring Kafka!)”, https://medium.com/flippengi-
neering/schema-and-topic-design-in-event-driven-systems-
featuring-kafka-a555ddfdb8d8, 1. May 2020

[4] N. Narkhede, G. Shapira, T. Palino “Kafka: The Definitive
Guide: Real-Time Data and Stream Processing at Scale”, 1st
ed. O’Reilly Sebastopol, pp. 248-250, July 2017.

[5] B. Slater “Topic Design” (August 2018) [Webinar]. Insta-
clustr. https://www.youtube.com/watch?v=XQJ9NoX_
yyU&ab_channel=Instaclustr

[6] Н. Кудуз, О. Ћалић, and С. Поповић, Моделовање
система за управљање токовима порука примјеном
Apache Kafka, 2019.

[7] Apache Kafka (2017) [Online] https://kafka.apache.org/
documentation/#gettingStarted

[8] A. Labus, M. Radenković, S. Nešković, S. Popović and S.
Mitrović (2022) “A Smart City IoT Crowdsensing System
Based on Data Streaming Architecture” Smart Innovation,
Systems and Technologies, vol 279. Springer, Singapore.

[9] R. Kraft et al. “Efficient Processing of Geospatial mHealth
Data Using a Scalable Crowdsensing Platform” Sensors
2020

[10] J. Traub et al., "Scotty: Efficient Window Aggregation for
Out-of-Order Stream Processing," 2018 IEEE 34th Interna-
tional Conference on Data Engineering (ICDE), 2018, pp.
1300-1303, doi: 10.1109/ICDE.2018.00135.

