
1272022 International conference on E-business technologies (EBT)

Abstract— The subject of this paper is the implementa-
tion of DevOps practices in an academic environment, specif-
ically at the School of Computing. The goal is to offer insights
into the implementation process alongside the chief challeng-
es that needed to be overcome. DevOps approach to software
development is quickly becoming an industry standard, be-
sides its technological aspects such as tools and pipelines,
DevOps also brought changes in culture necessitating tight
collaboration from team members. Despite it being an in-
dustry standard, most universities are yet to include DevOps
practices in their curriculums. For this purpose we propose
a model for incorporating DevOps practices in universities
based on the advances made at the fourth year of studies at
the School of Computing, where students were introduced to
some CI/CD aspects during the course of a semester long pro-
ject. We offer some insights into potential ways to better facil-
itate student collaboration, and ways to guide them towards
best practices already realized in the industry for bridging
the gap between the academic and corporate environments.

Keywords— project-based learning, DevOps, software
engineering.

I. INTRODUCTION

Business demands for scalability, availability and rapid
development of applications is constantly on the rise. To
meet these rising business demands, new methoologies and
tools are needed. One of the most popular approaches to-
day that seeks to meet these rising demands is DevOps[1].
DevOps is a way of improving the software development
process through the concepts of continuous development,
integration, testing, delivery and monitoring[2].

Despite the popularity of DevOps in the business en-
vironments, the concepts that it relies upon are often over-
looked in university education[3]. This problem manifests
itself in the ever rising demands for new software develop-
ers who are capable of working in DevOps environments,
but the universitiy curriculums are falling behind and leav-
ing the gap between academic and business environments
ever larger. While there are many attempts to implement
devops in education[4][5], there hasn't been a global shift
in educational pririties.

In order to overcome these problems new technolo-
gies and concepts must be introduced into the educational
process[6]. But the knowledge gap is not the only prob-
lem with the educatinal process, DevOps environments
heavily rely on collaboative culture as a cornerstone of
problem solving. To overcome this problem a pedagogical
shift must occur, where individual problem solving must
be directed towards problems encountered in the idustry
and complex problems overcome through teamwork and
sophisticated tools.

In this paper we present an approach for introducing
DevOps principles in senior years of university education.
The approach was evaluated at the School of Computing.
In order to better show the required changes to the educa-
tional process we will highlight the way the course was
organized and the tools which were used to guide students
through CI/CD (continious integration and continious de-
livery) and facilitate the change in student collaborative
culture.

II. DEVOPS CONCEPTS FOR SOFTWARE
ENGINEERING EDUCATION

The term DevOps stands for combination of develop-
ment(Dev) and IT operations(Ops). By combining these
two segments which were traditionally kept separate al-
lows for higher levels of collaboration and removes some
of the most common problems that arise when teams are
not aware how the other performs their tasks[7]. This para-
digm shift means that teams are becoming multifunctional
and are made up of members with different qualifications.
While this change in culture is critical its impact would
fall flat if it was not assisted by the various tools that bet-
ter facilitate this collaboration and in optimal cases even
automate it[8]. This high level of automation is in fact
something that is most associated with DevOps, but with-
out changes in culture that facilitate the use of these auto-
mation tools, their effect would be somewhat limited[9].

These automation tools and changes in culture are not
the only things that are required for a successful DevOps
implementation. In order to fully realize DevOps projects,
they need to be based on current technologies that allow

Project based learning for DevOps:
School of Computing experiences

Miloš Radenković

School of Computing
Union University
Belgrade, Serbia

mradenkovic@raf.edu.rs
0000-0002-1708-9799

 Snežana Popović

School of Computing
Union University
Belgrade, Serbia

spopovic@raf.edu.rs
0000-0002-6774-670X

 Svetlana Mitrović

Faculty of Project and
Innovation Management
EDUCONS University

Belgrade, Serbia
svmitrovic@mts.rs

128 Project-based Learning and E-learning

for applications, in the form of services[10][11], to be
packaged into containers for ease of testing and deploy-
ment[12]. These containers rather than source code are the
building blocks of DevOps projects and allow for such
high levels of automation and make deployment and scal-
ing of applications a standardized process. Likewise to ful-
ly capitalize on the automation aspects and the scalability
aspects, it is preferable to use microservice architectures,
where each microservice can be built, containerized, tested
and deployed in an automated manner.

The usual DevOps lifecycle is made up of eight dis-
tinct phases: planning, coding, building, testing, release,
deployment and monitoring[13]. In an ideal environment
all the activities besides planning and coding can be auto-
mated or at least made to work with minimal human guid-
ance. While DevOps is not in the strictest sense a project
management methodology, it relies on the project being
managed in an agile manner such as SCRUM where rap-
id iterations where automation can be fully leveraged[14]
[15].

III. PROJECT-BASED LEARNING
BASED ON DEVOPS

The DevOps approach was evaluated at the School of
Computing, at the fourth year of studies on the subject of
“Software Engineering”. The course had approximately
100 students enrolled which were further divided into four
teams, of 25 students each. These teams were formed with
the idea of tackling a single project during the course of
the semester, the performance on this project would play
the main role in their grade and participation was man-
datory. Since student teams were relatively large in size,
detailed coordination by the professors would be difficult,
for this reason students were required to self-organize
and were provided with considerable autonomy. Projects
themselves were open-ended in the sense that the students
were provided with a topic such as “Banking”, “Insur-
ance”, “Hospital”, “Accounting”. The only restrictions
to the projects were technical in nature and mostly dealt
with technologies, frameworks and system architectures.
Students were encouraged to form smaller teams to ful-
fill more specialized roles, and most teams settled into the
traditional teams of: Backend team, Frontend team, Spec-
ification team.

Students were divided into four roles:

Project Manager were tasked with keeping track of the
project itself. All the communication with professors was
through the managers, necessitating that student teams fil-
ter up any necessary information to manager level. Man-
agers were tasked with keeping detailed accounts on the
activities of individual team members with the help of
team leaders. In keeping with the autonomous nature of
teams, managers would also grade their team members,
and these grades would be used as the main component in
the students grade. Given their ability to directly influence
someone’s grade, managers were to play the a direct role

in the success of the project.

Assistant Managers were necessary due to the over-
whelming nature of the role of Project managers, their task
was to assist their manager with any required tasks, and
were given many powers to do so. The chief distinction
between managers and assistant managers was that only
the project manager could assign grades and communicate
directly with professors. Assistant managers also primarily
dealt with scheduling of meetings and other purely organ-
izational tasks.

Team leaders were tasked with running teams of be-
tween 5-10 team members. Seeing as most teams dealt
strictly with programming, the main role of team leaders
was to assign tasks to individual members, and to review
their code once the tasks were complete. Team leaders
rarely programmed themselves, and were usually more
experienced programmers that guided their team members
and helped them in their various tasks. Team leaders were
also tasked with informing managers on the state of their
tasks, and the activities of their team members.

Team members were tasked with completing their
tasks within the assigned deadlines, and were encouraged
to participate in as many meetings as possible.

A simplified view of the main interactions within the
framework can be seen on figure 1.

Figure 1. A simplified view of main interactions be-
tween roles

Since to goal of such organization was to facilitate
autonomous organization and close collaboration with-
in teams, students were free to manage their projects as
they saw fit. With the topics provided it was up to the
students to research how such systems functioned and to
provide their own specifications for them. These gathered
specifications were presented to the professors at regular
intervals for approval in order to maintain the required
complexity of the projects as well as to maintain that the
systems were faithfully represented. Students were free
to use any project management methodologies that they

1292022 International conference on E-business technologies (EBT)

saw fit, but all teams settled on agile methods, incorpo-
rating most SCRUM good practices in their projects, such
as one week sprints and regular short-length meetings. In
order to better capitalize on the agile nature of their pro-
jects, regular control points of their projects were organ-
ized. Each week every team would present their progress
to the professors, and any potential issues within the teams
would be addressed and questions answered. In addition to
the weekly control points, there were deliverable control
points where students had to present their code and appli-
cations, in order to gain points which are to be allocated to
their project as a whole. The points allocated in such a way
were at the project managers disposal for further allocation
to individual team members based on their effort up to that
point. In addition to the usual deliverables that were made
for 25%, 50% and 100% of project completion, students
were also encouraged to tackle additional tasks (mostly
dealing with CI/CD) which would likewise increase their
collective points.

In order to teach the students more about DevOps
workflows and organization. Teams had many tools at
their disposal and were taught and encouraged to incorpo-
rate them into their projects as much as possible. Some of
these tools include:

Mattermost – was used as the primary means of com-
munication within the project, and only mattermost com-
munication was considered to be “official” by the teaching
staff. Channels were formed around individual teams(for
example Backend), likewise channels were made for cross
team collaboration such as (back/front, back/spec, etc..).
Mattermost was also used for all official announcements
by the professors, and managers were also encouraged to
use mattermost for any official announcements. An exam-
ple of team channels for one of the project groups can be
seen of figure 2.

 Figure 2. Team chat with its relevant channels

BigBlueButton – is a video conferencing software, and
was used to facilitate student meetings. All student meet-
ings were made through BigBlueButton and were saved
by the platform for later viewing by either students who
could not make it to the meeting, or the professors. Big-
bluebutton was further integrated with mattermost, where
each bigbluebutton meeting would be assigned its own
mattermost channel, where the access link could be found,
and the recording to the meeting. By integrating these two
tools, we have made sure that all project communication
was transparent to all those involved, and hopefully min-

imized any problems that could arise due to access. An
example of integration between BigBlueButton and Mat-
termost can be seen on figure 3.

 Figure 3. Mattermost-BigBlueButton integration

Google Calendar – In order to ovecome scheduling
conflicts that come with such large groups, all students had
to keep their google calendars up to date. Google calendars
were the primary means of sharing invites for Bigbluebut-
ton meetings and were critical in ensuring that timeslot
could be found where everyone was available.

Github – every project had two separate repositories,
one for frontend and the other for backend development.
Only the project managers and team leaders had to permis-
sions to create, merge and push to branches. All other team
members had to use forks and pull requests in order to sub-
mit code for potential addition to a branch. A system based
on pull reqests meant that team leaders could play the role
of code reviewers before accepting any pull requests that
were of sufficient quality. Additionally these pull requests
were usually made by a single team member, resulting in a
highly transparent system where the contributions of indi-
vidual team members could be clearly measured.

Github project and github issues – students were en-
couraged to use github issues as project activities that
could be assigned to any individual team member. Then
as pull requests were made by those team members, they
could be tied to those issues. Github project was used as
an alternative to conventional project management appli-
cations such as openproject. The use of github issues with
github project allowed for a very fine grained approach to
project tracking. Likewise, being hosted on github allowed
these github projects to be viewable by both the professors
and other team members, keeping the state of the project
public for all. One of the student github projects with its
active tickets can be seen on figure 4.

Figure 4. Github project from one of the student teams

130 Project-based Learning and E-learning

Docker – In order to achieve continuous delivery, all
microservices within their projects had to be containerized.
For development purposes docker and docker-compose
tools were used. Docker-compose allowed the students
to live test their applications, where whole microservice
stack could be rapidly initialized on any machine. Dock-
er-compose was also used for live demonstrations of pro-
jects during classes.

Kubernetes – Since docker-compose was used for
development environments, docker images were already
developed and uploaded to docker repositories such as
dockerhub. The existence of these docker images made it
easy to integrate them inside a Kubernetes cluster where
production environments could be simulated, and continu-
ous delivery workflows integrated. All projects were pro-
vided with their own kubernetes cluster made up of several
nodes hosted on the private cloud.

Sonarcloud – in order to better facilitate continuous in-
tegration, testing and code quality was partially automated
by integrating Sonarcloud service with github repositories.
This integration allowed each pull request to be analyzed
by sonarcloud, to highlight bugs, failed tests, errors, and
bad quality code. Sonarcloud reports have proven to be an
invaluable tool for team leaders that needed to review and
approve pull requests.

IV. ANALYSIS AND CONCLUSION

As of the writing of this paper the projects are still on-
going, but as projects are organized around smaller deliv-
erables it was possible to analyze them as seperate lifecy-
cles in order to improve and further adapt the approach for
the coming iterations. Some of the main takeaways from
the projects are the following:

Students had limited knowledge on how software
should be tested and were averse to writing tests. After ad-
ditional effort was made to ensure that all team members
were educated on writing tests for their own forks they are
starting to realize how important testing is to the the pro-
ject lifecycle. Team leaders have further embraced testing
as a way of ensuring that the code they are reviewing is
properly tested before it is submitted to them. In order to
further reinforce the newly established testing practices a
requirement for 80% test coverage for all new microser-
vices was established.

If suitable infrastructure is provided in the form of
mattermost and bigbluebutton. Students will utilize this
infrastructure to its fullest. Additionally, transparency in
the form of recordings of their meetings plays a large fac-
tor in their use of the platforms. Likewise github in the
form of issues/project can be used for barebones project
management purposes, and has proven to be more than
up to this task especially when its close integration with
repositories is considered. Overall up to now, at the 50%
project progress students have made 153 BigBlueButton
video conferences with an average duration of 1 hour. A

short overview of mattermost activity for one of the teams
can be seen on figure 5.

Figure 5. Team statistics for one of the four teams

The project should have many deliverables, which en-
courages the students to be even more agile in their tasks.
In particular the deadline for the first deliverable should
be within the first two weeks of the course. This first de-
liverable should be centered around common task such as
user management, the goal of this first deliverable is to
ensure that backend and frontend development do not wait
too long for the first specificactions from the specifications
teams to arrive. By the time they are done with user-man-
agement services, they will have established the necessary
workflows and knowledge of tools in order to tackle the
more difficult tasks in the specifications.

There is a large disparity in both aptitude and knowl-
edge when backend and frontend tasks are concerned. All
students were interested in being a part of backend team
while interest in frontend development was lacking. When
left to choose their own teams, backend team members
outnumbered the frontend members at a factor of 2:1. Af-
ter the first deliberable this problem became evident to the
project management, and team „rebalancing“ took place.
After the rebalancing took place, the new frontend team
members had to be taught by the frontend team in order to
become productive team members. This disparity in both
aptitude and knowledge should be addressed as soon as
possible, so that „training“ can be done in the earliest iter-
ations so as not to endanger the capablities of the frontend
teams.

By using docker and containerizing their microservic-
es, students can truly view the rest of the project as a black
box into which the microservice they are developing can
be plugged in. No matter the size of the application, all
developers can run it through docker-compose and run
integration tests with other services. For this reason it is
important that students start containerizing their services
from the start of their projects.

By having such large teams of 25 people collaboration
becomes more difficult, but it also reinforces the idea that
good collaboration is critical to the success of the project,
and student teams will often see this for themselves and
will seek to improve their collaboration as time goes by.
Having such large teams also means that there is a large
disparity in knowledge and experience between students.
Since collaboration is critical to the success of the projects
the students have taken upon themselves to teach each
other the necessary technologies and good practices. This
knowledge transfer is further aided by bigbluebutton and
the fact that all meetings are recorded and can be accessed

1312022 International conference on E-business technologies (EBT)

at any time.

Since collaboration is critical to the success of the pro-
jects, naturally teams where team members know each oth-
er are naturally performing better than teams where there is
little prior knowledge among team members. Some teams
have recognized this problem and have started the prac-
tice of team building in order to improve collaboration and
make communication between team members easier.

While the managers have the means of negatively in-
fluencing someones grade, this mechanism was often not
utilized, and when it was utilized it often had a negative
effect on the team morale. For this reason teams have
realised that they need to focus on improving their own
collaboration in the form of better detection of delays and
misunderstandings. This has resulted in iterations becom-
ing shorter and tasks becoming more manegable and less
dependant on each other.

Collaboration between frontend and backend teams
broke down in periods of high activity in proximity to the
deadlines. In order to counteract this problem students
have realised the importance of documenenting their ser-
vices and have started using tools such as swagger. Addi-
tionally regular meetings between frontend and backend
teams have been established as the norm, where backend
teams present the developed services, and frontend details
how they would wish their data to be delvered.

By highlighting the most common issues faced by
large project teams and the solutions to these problems
we hope to provide any future implemenetations of De-
vOps in education with a suitable framework upon which
they can build their own courses. Likewise we presented a
set of tools which were made at the students disposal and
have proven critical to the success of the project teams.
Our experiences at the school of computing at the senior
year also show that when presented with suitable tools and
the knowledge on how to use them, students were able to
quickly adapt developing within CI/CD and working with-
in large teams in order to complete complex projects.

REFERENCES

[1] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Dev-
Ops,” IEEE Softw., vol. 33, no. 3, pp. 94–100, May 2016.

[2] L. Leite, C. Rocha, F. Kon, D. Milojicic, and P. Meirelles,
“A Survey of DevOps Concepts and Challenges,” ACM
Comput. Surv., vol. 52, no. 6, Nov. 2019.

[3] Z. Bogdanović, M. Despotović-Zrakić, T. Naumović, L.
Živojinović, and A. Bjelica, “Inducing creativity in engi-
neering education: A crowdvoting approach,” in 2019 18th
International Symposium INFOTEH-JAHORINA, IN-
FOTEH 2019 - Proceedings, 2019, no. March, pp. 20–22.

[4] H. B. Christensen, “Teaching devops and cloud comput-
ing using a cognitive apprenticeship and story- Telling ap-
proach,” Annu. Conf. Innov. Technol. Comput. Sci. Educ.
ITiCSE, vol. 11-13-NaN-2016, pp. 174–179, Jul. 2016.

[5] R. A. K. Jennings and G. Gannod, “DevOps - Preparing Stu-
dents for Professional Practice,” Proc. - Front. Educ. Conf.
FIE, vol. 2019–October, Oct. 2019.

[6] M. Fernandes, S. Ferino, U. Kulesza, and E. Aranha, “Chal-
lenges and Recommendations in DevOps Education: A
Systematic Literature Review,” ACM Int. Conf. Proceeding
Ser., pp. 648–657, Oct. 2020.

[7] T. Cardoso, R. Chanin, A. Santos, and A. Sales, “Combining
Agile and DevOps to Improve Students’ Tech and Non-tech
Skills,” vol. 1, no. Csedu, pp. 299–306, 2021.

[8] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano, “Soft-
ware Engineering for DevOps,” Ieee Comput. Soc., no.
June, pp. 94–100, 2016.

[9] M. Kersten, “A cambrian explosion of DevOps tools,” IEEE
Softw., vol. 35, no. 2, pp. 14–17, Mar. 2018.

[10] L. Chen, “Microservices: Architecting for Continuous De-
livery and DevOps,” Proc. - 2018 IEEE 15th Int. Conf.
Softw. Archit. ICSA 2018, pp. 39–46, Jul. 2018.

[11] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservic-
es Architecture Enables DevOps: Migration to a Cloud-Na-
tive Architecture,” IEEE Softw., vol. 33, no. 3, pp. 42–52,
May 2016.

[12] H. Kang, M. Le, and S. Tao, “Container and microservice
driven design for cloud infrastructure DevOps,” Proc. - 2016
IEEE Int. Conf. Cloud Eng. IC2E 2016 Co-located with 1st
IEEE Int. Conf. Internet-of-Things Des. Implementation,
IoTDI 2016, pp. 202–211, Jun. 2016.

[13] M. Virmani, “Understanding DevOps & bridging the gap
from continuous integration to continuous delivery,” 5th Int.
Conf. Innov. Comput. Technol. INTECH 2015, pp. 78–82,
Jul. 2015.

[14] L. E. Lwakatare, P. Kuvaja, and M. Oivo, “Relationship of
DevOps to Agile, Lean and Continuous Deployment,” Lect.
Notes Comput. Sci. (including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol. 10027 LNCS, pp.
399–415, 2016.

[15] A. Hemon, B. Lyonnet, F. Rowe, and B. Fitzgerald, “From
Agile to DevOps: Smart Skills and Collaborations,” Inf.
Syst. Front., vol. 22, no. 4, pp. 927–945, Aug. 2020.

