
892023 International conference on E-business technologies (EBT)

Big Data-driven Architecture for Crowdsensing
Systems in Smart Cities

Abstract—The subject of this paper is the development
of a crowdsensing system with a big data architecture that
aims to efficiently collect, process, and analyze data from var-
ious sensors deployed in smart cities. The primary goal of this
research is to propose an architecture that enables real-time
data collection, processing, and analysis for noise, vibrations,
healthcare, and pollution monitoring. The proposed architec-
ture is presented in detail, highlighting its components and
their interactions. By leveraging asynchronous event-based
communication and integrating Apache Kafka and Apache
Spark, the proposed system offers improved decision-making
capabilities and resource management for urban sustainabil-
ity. This research contributes to the field of smart cities and
crowdsensing by proposing a big data architecture that ena-
bles effective collection of data, processing, and analysis for
noise, vibrations, healthcare, and pollution monitoring.

Keywords - Event driven architecture, Apache Kafka,
Apache Spark, crowdsensing, smart city

I. INTRODUCTION

Smart cities are rapidly evolving to tackle environmen-
tal and health challenges posed by urbanization [1]. Smart
cities integrate physical and virtual worlds, providing or-
dinary objects with intelligence and achieving high levels
of integration, coordination, and cooperation to increase
quality of life, minimize environmental impact, and op-
timize resource usage. The effects are more noticeable in
urban areas and mega cities, and are achieved by integrat-
ing environmental sensing and automatic behaviour to ob-
jects to capture and analyse data from the real world for a
better virtual operation [2]. In smart cities, crowdsourcing
systems generate a vast amount of data that are crucial for
providing quality services and improving citizens' lives.
However, to make the best use of this data, it is necessary
to develop appropriate architectures that can effectively
manage large amounts of data and discover insights within
them. To achieve this, a combination of Big Data, EDA,
and microservice concepts are utilized for efficient data
processing, analysis, and visualization. This combination

enables fast and accurate execution of complex analyses
over vast amounts of data, which provides better under-
standing of urban processes and improves citizens' lives.
In recent years, big data-driven architecture has gained
attention as a viable solution for building scalable and ro-
bust crowdsensing systems in smart cities. EDA is an ar-
chitectural pattern where systems are designed to respond
to events or messages asynchronously, rather than follow-
ing a traditional request-response model [3]. This allows
decoupling of components, enabling them to work inde-
pendently and in parallel, resulting in improved scalability,
flexibility, and responsiveness.

One of the key components of an big data-driven archi-
tecture based crowdsensing system is the data streaming
platform, which is responsible for collecting and process-
ing sensor data in real-time. Apache Kafka, a distributed
data streaming platform, has gained popularity due to its
scalability, fault-tolerance, and high-throughput capa-
bilities, making it suitable for handling large volumes of
sensor data in smart cities [4]. The use of Apache Kafka
as the data streaming platform in this system enables effi-
cient data collection from diverse devices, such as noise,
vibrations, healthcare, and pollution sensors, and ensures
reliable and timely delivery of data to Apache Spark for
processing, thus contributing to the overall effectiveness
and performance of the crowdsensing system [5][6].

The real-time collection and processing of sensor data
is critical for addressing environmental and health chal-
lenges in urban areas [7]. For example, monitoring noise
and vibrations can help in identifying areas with high noise
pollution and taking appropriate measures to mitigate the
impact on public health. Similarly, monitoring healthcare
parameters such as heart rate and blood pressure can ena-
ble early detection of health risks and timely interventions
[8]. Additionally, monitoring pollution levels can help in
identifying pollution hotspots and implementing effective
pollution control measures.

The proposed architecture aims to effectively monitor

Branislav Jovanić

Institute of Physics
University of Belgrade

Belgrade, Serbia
brana@elab.rs

[0000-0003-4130-1638]

Vladimir Vujin

Faculty of Organisational Sciences
University of Belgrade

Belgrade, Serbia
vladimir.vujin@fon.bg.ac.rs

Aleksa Miletić

Faculty of Organizational Sciences
University of Belgrade

Belgrade, Serbia
aleksa@elab.rs

[0000-0001-8940-9897]

Miloš Radenković

School of Computing
Union University
Belgrade, Serbia

mradenkovic@raf.edu.rs
[0000-0002-1708-9799]

90 Big data and artificial intelligence

the environment for air pollution, noise, and vibrations in
order to derive insights and conclusions about the impact
of these factors on different parts of the city during specific
times of the day. This architecture is designed to handle the
massive amounts of data generated by crowdsensing appli-
cations and leverage it to derive meaningful insights about
the parts of the city that may be problematic during spe-
cific times of the day due to air pollution, noise, or vibra-
tions. The architecture will focus on developing efficient
mechanisms to collect, analyse, and store large amounts of
data from crowdsensing applications. Additionally, efforts
are made to notify people in a timely and relevant manner
about information that is pertinent to their specific needs,
such as individuals with health concerns related to air pol-
lution, noise, or vibrations.

The main goal of the proposed architecture is to effec-
tively monitor the environment for air pollution, noise, and
vibrations in order to derive insights and conclusions about
the impact of these factors on different parts of the city
during specific times of the day.

II. RELATED WORK

Data-Driven Knowledge Management Systems [9]
focus on the knowledge management process, including
knowledge exploration and exploitation, and the capture
and organization of explicit and tacit knowledge in or-
ganizational memory. Knowledge components which are
critical to the workings of such systems, can be stratified
into different levels and shared through various knowledge
conversion processes.

The proposed architecture is the further refinement
of the research done in [10], and is focused on the devel-
opment of a mobile crowdsensing system for monitoring
noise pollution in smart cities. The system is comprised of
several elements such as a crowdsensing mobile applica-
tion, cloud and big data infrastructures, a web application
for monitoring and data analysis, and REST web servic-
es for communication between components. The system
supports three scenarios for mobile device calibration: full
calibration using certified sound calibrators in a laboratory,
calibration based on the model of the mobile phone using
calibration data of other devices of the same model in the
database, and no calibration which is the most common
approach in crowdsensing contexts but provides lower ac-
curacy of individual measurements. Overall, the developed
mobile crowdsensing system offers a comprehensive ap-
proach for monitoring noise pollution in smart cities, lev-
eraging mobile devices and cloud-based infrastructure for
real-time data collection, analysis, and decision-making,
with flexibility in calibration methods based on accuracy
requirements and practical considerations.

Apache Kafka is a distributed streaming platform de-
signed to handle high-volume, real-time data streams. It
provides a publish-subscribe model where producers write
data to topics, and consumers subscribe to those topics to
receive and process the data. Kafka is known for its high

throughput, fault-tolerance, and scalability, making it a
popular choice for building data pipelines, event-driven
architectures, and real-time streaming applications [4].

Apache Spark, an open-source distributed data pro-
cessing engine, is another crucial component that can be
integrated with Apache Kafka for processing and analys-
ing sensor data in real-time. Apache Spark provides var-
ious powerful features such as batch processing, machine
learning, and graph processing, making it suitable for ad-
vanced data analytics tasks in smart cities [11]. The use of
big data-driven architecture can enable efficient data col-
lection and processing in large-scale smart city environ-
ments, where data from a diverse range of sensors need to
be integrated and processed in real-time. Big data-driven
architecture allows for decoupling of components, making
it possible to add or remove sensors without disrupting the
entire system [12]. This provides scalability and flexibility,
allowing the system to adapt to changing sensor deploy-
ments and data processing requirements in a dynamic ur-
ban environment.

III. BIG DATA-DRIVEN ARCHITECTURE FOR
CROWDSENSING SYSTEMS IN SMART CITIES

In this part of article will be presented architecture for
crowdsensing systems in smart cities designed to efficient-
ly collect, process, and analyse diverse data from multi-
ple sources in real-time. The architecture consists of five
layers: data sources, data streaming, data structure, data
analytics, and monitoring processes.

On the Fig. 1, first layer includes IoT sensors and mo-
bile phone sensors, existing databases, and files. Data col-
lection works similarly to edge computing and can perform
some data modification and analysis on the device itself
before sending it to the database. Mobile phone sensors
can include a wide range of sensors, such as GPS, accel-
erometer, gyroscope, magnetometer, ambient light sensor,
proximity sensor, and microphone, among others. These
sensors can provide valuable data on location, motion,
orientation, light levels, proximity to objects, and ambient
sound, among others.

IoT sensors, on the other hand, can be deployed
throughout the city and can be both static and mobile in na-
ture. Static IoT sensors can be installed at fixed locations,
such as on street lamps, buildings, or other infrastructure,
and can include sensors for monitoring environmental pa-
rameters such as temperature, humidity, air quality, noise
levels, and pollution levels. Mobile IoT sensors, on the
other hand, can be attached to moving vehicles, drones,
or other mobile devices, and can provide real-time data on
road conditions, weather conditions, and other dynamic
parameters. Additionally, data can also be collected from
mobile phones using specialized applications. In some cas-
es, citizens can install Raspberry Pi stations in their homes
to collect data, while in other cases, professional stations
can be installed by citizens or companies to collect data in
more specific locations such as yards or parking lots.

912023 International conference on E-business technologies (EBT)

In addition to mobile phone and IoT sensors, the data
sources layer can also include data from existing databas-
es and files. These can be data from municipal databases,
open data sources, social media, or other relevant sources.
Such data can provide additional context and metadata for
the crowdsensing data, such as location information, his-
torical data, or other relevant information that can enrich
the overall understanding of the urban environment.

Overall, the data sources layer of the proposed crowd-
sensing architecture encompasses a wide range of sensors
and data sources, including mobile phone sensors, IoT sen-
sors (both static and mobile), and existing databases and
files, all of which contribute to the collection of diverse
and rich crowdsensing data for analysis and insights in
smart city applications.

 The second layer, data streaming, plays a crucial role
in transmitting the crowdsensing data to a private cloud
for further processing and analysis. This layer utilizes the
MQTT (Message Queuing Telemetry Transport) protocol,
a lightweight messaging protocol designed specifically
for efficient and reliable communication between devices
in IoT applications [13]. MQTT ensures that the data is
transmitted in real-time, allowing for timely updates and
insights. Likewise, it provides secure and efficient commu-
nication, making it suitable for handling the large volumes
of crowdsensing data generated from IoT sensors.

Real-time data processing in Apache Kafka is per-
formed using Kafka Streams, a powerful and lightweight
stream processing library that is part of the Kafka ecosys-
tem. This allows for processing and decoupling of sensi-
tive user/mobile data and sensor values, ensuring that they
are separated and processed independently to maintain
data privacy and security.

To achieve this, data from different sources, such as
user/mobile data and sensor values, are ingested into sep-
arate Kafka topics using Kafka producers. Kafka topics
act as channels that hold the data streams in a distribut-
ed and scalable manner, allowing for parallel processing.
Kafka Streams then consumes these topics and performs
real-time data processing operations, such as filtering, ag-
gregation, transformation, and enrichment, using a stream
processing topology defined by the application logic.

Data processing layer, after data is processed in Apache
Kafka using Kafka Streams, it will be sent to Apache Spark
for further analysis in real-time or batch mode, depending
on data structure. Apache Spark is a popular distributed
data processing framework that provides advanced analyt-
ics capabilities for large-scale data processing [14]. The
processed data from Apache Kafka will be transformed
and organized into a unified and structured format using
data structuring techniques.

Fig. 1 - Event-driven architecture for crowdsensing systems in smart cities

92 Big data and artificial intelligence

In the proposed architecture, Apache Spark can con-
sume the processed data from Kafka topics and perform
various data analytics operations, such as data aggregation,
machine learning, and graph processing, to gain insights
and extract valuable information from the data. This en-
ables efficient data analysis in Apache Spark and ensures
that the data is stored in a suitable database for further re-
trieval and analysis.

The fourth layer of the proposed architecture involves
interactive services that allow users to further interact with
the processed data and take appropriate actions. These ser-
vices include:

1. The Filtering service enables users to apply filters
and settings to the data for tailored analysis and deci-
sion-making. Filters can be set by location or time.

2. The Collaboration service promotes real-time collabo-
ration among users, facilitating information sharing and
feedback exchange.

3. The Decision support service provides tools for data vis-
ualization, analytics, and predictive modeling to support
evidence-based decision-making.

4. The Control service allows remote management and
control of devices or systems based on processed data,
enhancing system responsiveness.

5. The Algorithm training service supports continuous
training and refinement of algorithms for improved sys-
tem performance.

These interactive services empower users to further in-
teract with the processed data, collaborate, make informed
decisions, take actions, and continuously improve the
system's performance, leading to a more effective and us-
er-centric solution for monitoring environmental pollution
and healthcare in smart cities.

The final layer, monitoring processes, involves moni-
toring and tracking the performance and effectiveness of
the entire architecture. For that will be utlized tools such as
Prometheus and Grafana. Also thay will ensure the timely
and accurate processing of crowdsensing data. Configu-
ration involves managing the various components of the
architecture, such as sensors and databases, to ensure they
are working together smoothly and efficiently. Security in-
volves implementing measures to protect the data being
collected and processed, as well as ensuring the overall
security of the architecture itself.

IV. IMPLEMENTATION REMARKS

In this part will be presented technologies and why are
they chosen for implementation of the proposed architec-
ture.

Kafka is an asynchronous messaging system that pro-
vides a messaging system with a broker for broadcasting
messages and storing them for as long as needed, making
it suitable for streaming and fire-and-forget messaging [3].
Unlike traditional messaging systems, Kafka is distributed
and provides high availability, storage, and linear scale-out

across a cluster. Some people compare Kafka to a data-
base due to its storage capabilities, support for large data
volumes, SQL interface for querying data, and transaction
support. Kafka's Connect interface allows for data integra-
tion with various interfaces and datastores, and its stream-
ing APIs enable data manipulation in-flight [3].

Apache Kafka is capable of accepting data from vari-
ous sources through Kafka Connect, which allows data to
be pulled from IoT sensors through the MQTT protocol,
mobile applications, as well as databases and files.

Apache Kafka and Apache Spark are an ideal com-
bination for processing and analysing large-scale data in
real-time.[15] Spark, with its fast and general-purpose
cluster computing framework, can process data in par-
allel across a cluster of machines, enabling scalable and
high-performance data processing. The integration be-
tween Kafka and Spark allows for easy data ingestion and
real-time data processing in Spark Streaming applications
[15]–[17]. Kafka's ability to store and retain data for a con-
figurable period of time enables Spark Streaming to per-
form analytics on both historical and real-time data. This
makes the combination suitable for a wide range of use
cases, from real-time data analytics to processing of large-
scale data streams.

Grafana and Prometheus are likewise a powerful com-
bination for monitoring distributed systems. Prometheus
provides reliable and scalable monitoring and alerting ca-
pabilities, while Grafana offers rich visualization and dash-
boarding features [18], [19]. Together, they enable users
to gain insights into the performance and health of their
systems through customizable visualizations and interac-
tive dashboards.

In the proposed architecture, the Kafka cluster will be
deployed on a private cloud infrastructure and managed
using Kubernetes, a popular container orchestration plat-
form. If a Kafka broker pod fails, Kubernetes will automat-
ically detect the failure and initiate a rescheduling process
to restart the failed pod on a healthy node.

Fig. 2 Event-driven architecture for
crowdsensing systems in smart cities

932023 International conference on E-business technologies (EBT)

V. CONCLUSION

The proposed architecture, implemented in smart cit-
ies with a mobile app for monitoring noise, vibration, air
pollution, and healthcare, offers several benefits. The most
notable benefit lies in its enables real-time data process-
ing, which allows citizens to receive timely and accurate
information about pollution levels in their vicinity. This
empowers citizens to make informed decisions regarding
their health and well-being. The system also offers the
ability to decouple sensitive data, ensuring the privacy
and security of user information. Additionally, the use of
Prometheus and Grafana for monitoring provides real-time
insights into the performance and effectiveness of the sys-
tem, enabling proactive management and troubleshooting.
Furthermore, deploying the system on a private cloud with
Kubernetes ensures high availability and scalability, mak-
ing it suitable for large-scale deployments in smart cities.
Overall, this system offers a valuable tool for citizens to
monitor environmental pollution and healthcare in their
localities, leading to improved quality of life and informed
decision-making.

Lastly, the integration of Apache Kafka and Apache
Spark as data streaming and processing platforms, respec-
tively, can provide powerful capabilities for real-time data
analytics in smart cities. Apache Kafka can efficiently col-
lect and stream data from sensors to Apache Spark, where
data processing tasks such as filtering, aggregation, and
analysis can be performed on the collected data, enabling
real-time insights and decision-making in smart cities. The
combination of Apache Kafka's high-throughput capabil-
ities for data collection and Apache Spark's robust data
processing capabilities can contribute to the effectiveness
and performance of crowdsensing systems that deal with
diverse data types.

REFERENCES

[1] M. P. Rodríguez-Bolívar, “Transforming city governments for
successful smart cities,” Transform. City Gov. Success. Smart
Cities, pp. 1–185, Jan. 2015, doi: 10.1007/978-3-319-03167-5/
COVER.

[2] O. Alvear, C. T. Calafate, J. C. Cano, and P. Manzoni, “Crowd-
sensing in Smart Cities: Overview, Platforms, and Environment
Sensing Issues,” Sensors 2018, Vol. 18, Page 460, vol. 18, no. 2,
p. 460, Feb. 2018, doi: 10.3390/S18020460.

[3] B. Stopford and S. Newman, “Concepts and Patterns for Stream-
ing Services with Apache Kafka Designing Event-Driven Sys-
tems,” 2018, Accessed: Apr. 23, 2023. [Online]. Available:
http://oreilly.com/safari

[4] A. Zelenin and A. Kropp, “Apache Kafka,” in Apache Kafka,
2021, pp. I–XVII. doi: 10.3139/9783446470460.fm.

[5] A. Miletić, P. Lukovac, B. Radenković, and B. Jovanić, “De-
signing a data streaming infrastructure for a smart city crowd-
sensing platform,” E-bus. Technol. Conf. Proc., vol. 2, no. 1, pp.
61–64, Jun. 2022, Accessed: Nov. 19, 2022. [Online]. Available:
https://ebt.rs/journals/index.php/conf-proc/article/view/128

[6] A. Miletić, M. Despotović-Zrakić, Z. Bogdanović, M. Radenk-
ović, and T. Naumović, “WorldCIST’23 - OpenConf Abstract
Submission, Peer Review, and Event Management System.”
http://itmasoc.org/wcist23/modules/request.php?module=oc_
program&action=summary.php&id=240 (accessed May 10,
2023).

[7] M. G. Alvarez, J. Morales, and M. J. Kraak, “Integration and Ex-
ploitation of Sensor Data in Smart Cities through Event-Driven
Applications,” Sensors 2019, Vol. 19, Page 1372, vol. 19, no. 6,
p. 1372, Mar. 2019, doi: 10.3390/S19061372.

[8] E. Roth, “The Internet of Medical Things: What is it and What is
its Role in Healthcare.” https://www.productiveedge.com/blog/
the-internet-of-medical-things-what-is-it-and-what-is-its-role-
in-healthcare (accessed May 03, 2023).

[9] T. Le Dinh, T.-C. Phan, and T. H. Bui, “Towards an Architec-
ture for Big Data-Driven Knowledge Management Systems”,
Accessed: Apr. 12, 2023. [Online]. Available: https://www.re-
searchgate.net/publication/314047241

[10] I. Jezdović, S. Popović, M. Radenković, A. Labus, and Z. Bog-
danović, “A crowdsensing platform for real-time monitoring
and analysis of noise pollution in smart cities,” Sustain. Com-
put. Informatics Syst., vol. 31, Sep. 2021, doi: 10.1016/J.SUS-
COM.2021.100588.

[11] A. Bansal, R. Jain, and K. Modi, “Big Data Streaming
with Spark,” Stud. Big Data, vol. 43, pp. 23–50, 2019, doi:
10.1007/978-981-13-0550-4_2/COVER.

[12] F. Ten Sythoff, “The Advantages of Event-Driven Architec-
ture (EDA),” May 11, 2022. https://www.greenbird.com/news/
event-driven-architecture-eda (accessed Apr. 23, 2023).

[13] D. Soni and A. Makwana, “A survey on MQTT: a protocol of
internet of things (IOT) Prediction of Telemetry data using Ma-
chine Learning Techniques View project Analysis and Survey
on String Matching Algorithms for Ontology Matching View
project a survey on MQTT: a protocol of inter,” 2017, Accessed:
Apr. 23, 2023. [Online]. Available: https://www.researchgate.
net/publication/316018571

[14] I. Pointer, “What is Apache Spark? The big data platform that
crushed Hadoop | InfoWorld.” https://www.infoworld.com/ar-
ticle/3236869/what-is-apache-spark-the-big-data-platform-that-
crushed-hadoop.html (accessed Sep. 17, 2022).

[15] G. M. D’Silva, A. Khan, Gaurav, and S. Bari, “Real-time pro-
cessing of IoT events with historic data using Apache Kafka and
Apache Spark with dashing framework,” RTEICT 2017 - 2nd
IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Tech-
nol. Proc., vol. 2018-January, pp. 1804–1809, Jul. 2017, doi:
10.1109/RTEICT.2017.8256910.

[16] L. Hall, “How to process streams of data with Apache Kaf-
ka and Spark.” https://cloudblogs.microsoft.com/open-
source/2018/07/09/how-to-data-processing-apache-kafka-
spark/ (accessed Apr. 24, 2023).

[17] “Apache Kafka - Integration With Spark.” https://www.tutorial-
spoint.com/apache_kafka/apache_kafka_integration_spark.htm
(accessed Apr. 24, 2023).

[18] M. Chakraborty and A. P. Kundan, “Grafana,” Monit. Cloud-Na-
tive Appl., pp. 187–240, 2021, doi: 10.1007/978-1-4842-6888-
9_6.

[19] “Get started with Grafana and Prometheus | Grafana documen-
tation.” https://grafana.com/docs/grafana/latest/getting-started/
get-started-grafana-prometheus/ (accessed Apr. 24, 2023).

