
 E-education 105

Microservice architecture in E-learning

1st Ana Milovanović

Department for e-business

University of Belgrade, Faculty of organizational sciences

Belgrade, Serbia

anamilovanovic994@gmail.com

https://orcid.org/0000-0001-5282-881

Abstract—Microservice architecture has found its

application in the design and implementation of systems used

in e-learning. Multiple cases of applying microservice

architecture in e-education were considered and it is

determined that there is a place to further investigate

integration of the custom e-learning microservices with some

existing LMS (Learning Management System) such as Moodle

LMS. The aim of this paper is to present a possible solution of

a custom microservice architecture that is based on integration

with some existing LMS. The approach that was used to

identify microservices is Domain Driven Design. Integration of

the Cloud Data Platform into this architecture is also

considered.

Keywords—microservices, microservice architecture, e-

learning, Cloud Data Platform, LMS, Domain Driven Design

I. INTRODUCTION

There are different definitions of microservices in
literature. One of them is given by Sam Newman [1], who
defines microservices as autonomous services that work
together [1]. Thus, the microservice architecture can be
viewed as an approach in the development of applications
that are organized as a set of independent and small services
that communicate using a mechanism, mainly the HTTP
protocol [2]. The deployment of such services is performed
independently of the others, and the centralized management
of these services also stands out as a separate service [2].

As microservice architecture is used to implement
different solutions due to its nature to provide more
flexibility and reusability of existing parts (microservices) of
the system, the purpose of this paper is to further investigate
possible scenarios of integrating microservice architecture in
e-learning environments.

 Multiple cases of applying microservice architecture in e-
education were considered. Some solutions investigate the
migration of custom Learning Management Systems (LMS)
to microservice architecture [3]. The others consider
improvement of the existing microservice architecture of the
e-learning platform [4] or VLE (Virtual Learning
Environment) [5] or developing their own educational
platform for remote access using microservices [6].

Based on the considered existing cases, it is determined
that the integration of the custom microservices with some
existing LMS is lacking. The goal of this paper is to provide
a possible solution of the custom microservice architecture
that will be part of the e-learning flow and that is based on

integration with some existing LMS (e.g. Moodle). Also,
possible design of Cloud Data Platform and its place in
microservice architecture is presented.

In order to identify microservices Domain Driven Design
should be considered [5]. This approach is based on Bounded
Contexts. Those represent consepts that facilitate breaking
systems that are complex into smaller parts [5]. Concepts
such as The API Gateway and Message Broker, that are
commonly used in the implementation of this type of
architecture, are illustrated. The solution gives presentation
of microservice architecture which consists of identified e-
learning microservices, Cloud Data Platform and their
communication and integration with Moodle LMS.

II. LITERATURE REVIEW

When comparing microservice architecture and
monolithic architecture the first difference that is easily
noticeable is in the deploy process. Monolithic architecture
deploys entire application and all components of the system
at once [2]. This implies that the whole code base and all
parts of the application are in one place. It is hard to maintain
this approach when working with distributed teams. On the
other hand, in microservice architecture deploy of
independent services takes place [2].

In order to achieve best practice of deploying
microservices independetly [1], changes in one service can
be found in production after the release, without being
conditioned by changes in other services, i.e. there is no
orchestration of deploys of different services [1]. Also, it is
important to isolate failures [1] and to know when it is
necessary to sacrifice availability, and when consistency in
order for the whole system to work [1].

Using microservice architecture approach, new
technologies can be adopted much faster and changes affect
only one service or part of the system so the risk is lower [1].
By changing technology in the application that is built by
monolithic architecture approach the whole system will be
affected.

Scalability should also be considered. In the monolithic
approach scaling can be done only in one dimension.
Multiple copies of the application can be placed behind the
load balancer and this causes increase in the number of client
requests that can be simultaneously served [2].

 In this case, scaling cannot be performed for each
component that may have different requirements (e.g. CPU

 2021 International conference on E-business technologies (EBT) 106

or memory usage) [2]. This type of scaling is available in
microservice architecture.

Service-oriented architecture (SOA) should also be
mentioned in the context of comparison with microservice
architecture. Compared to the traditional SOA architecture,
the microservice architecture is more decoupled, i.e. the
components of this architecture are more independent [7].

In their work [7], a group of researchers singled out the
most commonly used architectural patterns in microservice
architecture. These patterns were divided into three different
groups according to their purpose [7]:

• Orchestration and coordination patterns - deal with
logical communication and coordination of
microservices.

• Deployment patterns - hosting is done via
containers or virtual machines.

• Data Management Patterns – especially Data
Storage options.

The first group includes the three most commonly used

approaches, namely [7]: the API Gateway pattern, the
Service Discovery pattern, and the Hybrid pattern.

The API Gateway routes the requests that consumers
send to microservices and thus calls microservices and
aggregates the results [7]. In [8], the use of this pattern in
microservice architecture is compared with the Facade
object-oriented design pattern. The most common
application of this pattern is reflected in communication with
various frontend clients [7]. Each client is provided with the
custom API, so that each one of them has access to specific
resources only [7]. In some cases, the API Gateway also
serves as a load balancer because the locations and addresses
of all services are known [7].

Message Broker works on the principle of publish /
subscribe message system which is a form of asynchronous
communication between services. In this model, every
message sent to a particular topic will be received by all
services that have subscribed to that topic [9].

There are numerous discussions on the development of
cloud platforms, and they concern the choice between cloud-
vendor-specific services as opposed to creating a platform
that would be cloud independent [10]. The experiences of the
authors [10] are such that from the point of view of the
support price, the PaaS (Platform as a Service) solution pays
off more, even though there is a possibility of vendor lock-in.
The universal architecture of the Cloud Data Platform
consists of four layers [10]: Ingest, Storage, Processing and
Serving.

The data collection layer (Ingest) is responsible for
connecting to the data sources, whether the data is in stream
form or in batch form [10]. The data storage layer has the
main purpose of reliable storage for long-term use. There are
two main types of this storage: the “fast” and the “slow”
storage [10]. Slow storage stores data for a long time and can
be accessed at any time, it is used to quickly read different
volumes of data.

When it comes to streams, it is necessary to apply
another type of storage, the so-called „fast“ storage. Apache
Kafka as well as Amazon Kinesis are some examples of this
type of storage [10].

The processing layer is the most important in the
architecture and is the central part of the platform. Business
logic and all transformations are implemented here, as well
as any validations of data. This layer can perform various
manipulations on the data, and later store them in the storage
[10]. The service layer delivers the results of different
analytical processing to different consumers.

In their work [3], researchers from the University of
Tampere in Finland investigate the migration of existing
custom Learning Management Systems (LMS) to
microservice architecture. In order to share LMS resources
between several universities (Smart Learning Environments
project) and the impossibility for all universities to use the
same LMS, the use of microservice architecture is needed
[3].

The LMS should provide standardized services, some of
those standardized solutions are [3]: SCORM (Sharable
Content Object Reference Model) as a set of specifications
for creating and sharing e-learning content, xAPI for the
metadata on learning analytics and LTI (Learning Tools
Interoperability) protocol for authentication and assessment.
As basic microservices, the researchers pointed out [3]:
authentication, management of user and course-related
information, assessment, report generation and analysis.

The scientific paper [4], which is the work of a group of
researchers from the University of Applied Sciences Emden /
Leer from Germany, deals with the improvement of the
existing microservice architecture of the e-learning platform
STIMEY.

Several domains have been identified [8]: User profile,
Activity stream (dashboard), Community, Social messaging,
Online-courses. Based on this division, REST API services
were identified [4]: Dashboard, Auth, Chat, Course, Robot
and Communities Discussion.

Lihonga VLE (Virtual Learning Environment) from [5] is
based on microservices, consists of loosely coupled
components. Offline access to data stored on the client is
enabled, the system can be hosted on the cloud and due to the
use of open API this system can be expanded and adapted to
specific environments [5].

The architecture consists of eight components, which are
divided into four groups: Gateway, Message Broker (Kafka -
stream processing platform), Services and Clients (Android
and iOS applications). The core of the architecture is the API
Gateway. It generates necessary events, and then sends the
response (HTTP Response) to a client application. Events
implicitly trigger services through the Message Broker [5].

In [6], the API Gateway component serves as a link
between the client and the microservices. It receives client
calls, and then communicates with the learning system by
calling the appropriate microservice. The LMS component
consists of three microservices: RemoteLaboratory,
ExperimentGuides and Evaluation System. Each of these
microservices further communicates with the data storage
[6].

III. METHODOLOGY

In order to create custom microservice architecture and to
identify the microservices that make up the system, Domain
Driven Design approach and the Bounded Contexts are used.

 E-education 107

In this case, it is necessary to identify e-learning
microservices whose integration is done with the Moodle
platform. Identified e-learning contexts are (TABLE I):
authentication, resource search, learning through play,
communication, analytics and reporting. A microservice
corresponds to each identified context (Fig. 1):

• Authentication service,

• Teaching materials search service – searches for
teaching materials by certain criteria

• Education games service – implementation of an
educational quiz,

• Communication service – implements chat
functionality,

• Analytics and reporting service – generating reports
on student activities.

Those microservices communicate with Moodle LMS

and with one another using asynchronous publish / subscribe
patern in form of Message Broker. So messages sent to
specific topic are going to be received by e-learning
microservices that are subscribed to that topic [9].

TABLE I. Indentified Contexts

No.
Microservice architecture Contexts

E-learning Contexts
Cloud Data Platform

layers

1. Authentication Ingest

2. Resource search Storage

3. Learning through play Processing

4. Communication Serving

5. Analytics and reporting

The second part of the architecture is the Cloud Data
Platform with application in e-learning. As this is a data
management platform, context identification is facilitated
and relies on the layers identified in the universal
architecture of the Cloud Data Platform [10]. Contexts i.e.
the layers are as follows (TABLE I): Ingest, Storage,
Processing and Serving. Each of these layers corresponds to
a microservice, respectively (Fig. 1): Data reading and
validation microservice, Database provider microservice,
Data processing microservice and microservice LTI
provider.

The GitHub version control platform is used as event
emitter. This platform is commonly used for various Social
coding [11] activities. If some of that activities occurs, for
which webhook is created, Github webhook [12] event is
generated.

After the GitHub webhook event has happened, the call is
forwarded to the API Gateway which further determines
which event needs to be generated and sends it to the
Message Broker. The Message Broker forwards this event to
the appropriate service. The Data reading and validation
service was launched by this event.

 It processes the data and validates it. This service further
sends an event triggering the Database provider service
through the Message Broker.

 This service stores data obtained through the events in a
NoSQL database, and is also in charge of generating an
endpoint for reading and modifying data in this database.

Fig. 1. Microservice architecture diagram

 The Data processing service communicates with the
previous service via the HTTP protocol. In this way, it
obtains data from the database and transforms it. Finally, the
service that uses the data generated in this way is the LTI
provider that requests it via the HTTP protocol, as shown in
the figure (Fig. 1).

In order for the LTI (Learning Tools Interoperability)
provider service to successfully connect to the Moodle
platform, it is necessary to use the LTI protocol [13]. Three
components stand out in this part of the architecture [13]:
web browser, provider (microservice LTI provider) and
Moodle LMS.

The web browser is in charge of displaying the module
that the Moodle LMS (e.g. an instance of the external
Moodle website) requests from the provider. At the time of
the request, the Moodle sends data (payload) to the provider
address by HTTP POST method [13], and in response
receives data from the LTI provider in HTML format and
thus displays the given module on the page where it is
referenced in the settings.

Since the end user can have different roles (student or
instructor) and since the role data can be obtained from
Moodle [13], if the call comes from a user that has a role of
student, the display of the module may differ from the one
that is displayed to the user having the role of instructor.

IV. RESULTS AND IMPLICATIONS

Exploring literature that dealt with implementing
microservice architecture in e-learning environments led to a
conclusion that integrating this type of arhitecture with
existing LMS solution (e.g. Moodle LMS) is lacking in
practice.

In search for possible ways of integration, a proposal of
microservice architecture with application in e-education is
given. In addition to the general presentation of
microservices and their communication, the patterns used in
the implementation of this type of architecture are illustrated.

 2021 International conference on E-business technologies (EBT) 108

Asynchronous communication is performed between
certain services according to the Pub / Sub pattern principle,
and thus better performance is achieved. Message Broker is
used for communication between microservices. As in paper
[5], Kafka can be used for implementation of this pattern.

E-learning microservices whose integration is done with
the Moodle platform were identified. They are an extension
of the LMS solution. Also, they use data available to
Moodle, which is externally available through the Moodle
API. Then, a possible design of Cloud Data Platform is
considered to be integrated with this type of arhitecture.
GitHub is identified as event source. The webhook concept is
used to invoke appropriate services in Cloud Data Platform.
Microservice patterns the API Gateway and Message Broker
are used in this part of architecture.

In conclusion, it is important to state that, as given
microservice solution suggests, there is a possible way to
implement microservice architecture which is based on
integration with existing LMS system. This solution also
includes possible scenario of integrating custom Cloud Data
Platform into the e-learning flow.

 The given solution can be used as a starting point for
further consideration of this idea. The main goal of
implementing this kind of architecture is to achieve
flexibility and reusability of existing parts of the system, that
being the basic characteristic of microservices.

Furthermore, adding new e-learning microservices is
facilitated since existing microservices are independent,
concerning technology (programming language) and
functionality that is provided in each one of them.

REFERENCES

[1] S. Newman, Building microservices : designing fine-grained systems,
First Edition. O’Reilly Media, 2015.

[2] D. Namiot and M. Sneps-Sneppe, “On Micro-services Architecture,”
Int. J. Open Inf. Technol., vol. 2, no. 9, pp. 24–27, 2014.

[3] P. Niemelä and H. Hyyrö, “Migrating Learning Management Systems
Towards Microservice Architecture,” 2019. [Online]. Available:
https://www.tuni.fi/en.

[4] D. A. Bauer, D. Alessandro Bauer, B. Penz, J. Mäkiö, and M. Assaad,
Improvement of an Existing Microservices Architecture for an E-
learning Platform in STEM Education. 2018.

[5] S. Kapembe and J. Quenum, “Lihonga-a microservice-based virtual
learning environment,” in Proceedings - IEEE 18th International
Conference on Advanced Learning Technologies, ICALT 2018, Aug.
2018, pp. 98–100, doi: 10.1109/ICALT.2018.00030.

[6] D. A. Segura-Torres and E. F. Forero-Garcia, “Architecture for the
management of a remote practical learning platform for engineering
education,” in IOP Conference Series: Materials Science and
Engineering, 2019, vol. 519, no. 1, doi: 10.1088/1757-
899X/519/1/012020.

[7] D. Taibi, V. Lenarduzzi, and C. Pahl, “Architectural patterns for
microservices: A systematic mapping study,” in CLOSER 2018 -
Proceedings of the 8th International Conference on Cloud Computing
and Services Science, 2018, vol. 2018-January, pp. 221–232, doi:
10.5220/0006798302210232.

[8] S. Zhelev and A. Rozeva, “Using microservices and event driven
architecture for big data stream processing,” in AIP Conference
Proceedings, Nov. 2019, vol. 2172, doi: 10.1063/1.5133587.

[9] AWS, “Publish/subscribe messaging,” https://aws.amazon.com/pub-
sub-messaging, May 14, 2021.

[10] D. Zburivsky and L. Partner, Designing Cloud Data Platforms, ISBN
9781617296444. Manning Publications, 2020.

[11] AlMarzouq, M., AlZaidan, A. and AlDallal, J. (2020), "Mining
GitHub for research and education: challenges and opportunities",
International Journal of Web Information Systems, Vol. 16 No. 4, pp.

451-473. https://doi.org/10.1108/IJWIS-03-2020-0016.

[12] GitHub docs, “Webhooks and events,”
https://docs.github.com/en/developers/webhooks-and-events/about-
webhooks, May 14, 2021.

[13] IBM tutorials, “Implement learning tool interoperability,”
https://developer.ibm.com/tutorials/implement-learning-tool-
interoperability, May 14, 2021.

https://doi.org/10.1108/IJWIS-03-2020-0016

