
 2021 International conference on E-business technologies (EBT) 44

The Challenges of NoSQL Data Warehousing

1st Lucija Petricioli

University of Zagreb, Faculty of

Electrical Engineering and Computing,

Unska 3, 10000 Zagreb, Croatia

lucija.petricioli@fer.hr

ORCID: 0000-0003-1878-4969

2nd Luka Humski

University of Zagreb, Faculty of

Electrical Engineering and Computing,

Unska 3, 10000 Zagreb, Croatia

luka.humski@fer.hr

ORCID: 0000-0002-6819-8899

3rd Boris Vrdoljak

University of Zagreb, Faculty of

Electrical Engineering and Computing,

Unska 3, 10000 Zagreb, Croatia

boris.vrdoljak@fer.hr

ORCID: 0000-0003-0081-172X

Abstract—Data warehouses are an important part of

decision support systems in business. The volume of data

currently being created can at times push the capabilities of

relational data warehouses to their limits. A possible step

forward is to use NoSQL solutions to model data warehouses,

since they were made for the ever-increasing amount of data

that various platforms deal with. However, simply deciding a

data warehouse should be based on a NoSQL approach does

not mean the problem has been solved. The flexibility of

NoSQL leads to a host of new problems, such as how to

perform various OLAP operations on a data warehouse that

does not have a fixed schema or how and when to compute

aggregate values. This paper provides an overview of various

solutions that have been theorized and presented along with

their advantages over relational data warehouses, as well as

their drawbacks.

Keywords— NoSQL, data warehouse, OLAP, Big Data

I. INTRODUCTION

Every day more and more data are created: data about
orders, sales, shipments, e-commerce website clickstreams,
etc., each carrying the potential of improving business
practices and providing new insights into current operations.
However, the increasing volume of data can cause strain to
well-established systems that have been in place for years.
Relational data warehouse systems at times cannot cope with
Big Data due to their inherent properties: the speed they are
created at, their heterogeneity, their sheer amount, etc. [1, 2].
A shift to a newer paradigm is tempting and even beneficial
in some cases, but not without its own set of problems.

Today’s answer to efficient Big Data storage is NoSQL
(Not only SQL) databases. Their four most common and
well-accepted types are [3]:

• key-value databases, which store data as key-value
pairs;

• column-stores, which store attribute values as
columns instead of rows;

• document-oriented databases, which store data as
documents made up of tagged elements;

• graph databases, which store data as edges and
nodes.

Regardless of type, they promise flexibility and
scalability, two aspects that can ease the issues connected to
Big Data; issues which relational databases can hardly cope
with. These aspects have even resulted in more and more
companies adopting NoSQL databases as their preferred type
of storage. Nevertheless, these capabilities are not enough to

start a mass migration of data warehouses from the relational
to the NoSQL paradigm. Since data warehouses are a part of
decision support systems, which need careful planning, as
well as require certain capabilities of the technologies used to
develop them (that NoSQL might not offer), the shift to
NoSQL (if necessary) has to be a well-thought out process.

Generally, best practices (e.g. star schema) and
benchmarks made for data warehouses have yet to migrate to
the NoSQL world. Best practices are often either hard to
implement in NoSQL or cannot be implemented due to the
differences between the relational and non-relational
approach [3, 4]. Data warehouse benchmarks have started a
shift towards including NoSQL, albeit a slow one [5, 6]. The
solutions currently in place are mature and well established;
support is readily available for them, and, unlike NoSQL
systems, there are many experts that can use them easily, and
develop for them. The lack of NoSQL experts is another
issue; NoSQL databases are still relatively new, and they are
still in flux. New versions of the same database, new
implementations of a NoSQL concept and a change in
approach (especially if it is to the same NoSQL database) are
frequent occurrences, making NoSQL databases a tough field
to gain expertise in [7]. Moreover, since there are more types
of database to choose from, selecting the appropriate
technology for a task can become a somewhat complicated
task.

These are only a small fraction of the reasons a greater
adoption of NoSQL systems for data warehousing has not
been seen in recent years. This paper aims to highlight the
various advantages and drawbacks of switching over to
NoSQL technologies. It is organised as follows: section II.
lists the advantages NoSQL data warehouses have over
relational data warehouses; section III. lays out various
approaches to creating a NoSQL data warehouse and the
various drawbacks that occur when doing so; and section IV.
gives a conclustion to this paper.

II. NOSQL ADVANTAGES OVER RELATIONAL DATA

WAREHOUSES

Not so long ago, relational data warehouses were more
than sufficient for all data analyses companies were eager to
conduct. Hardware improvements were promising to speed
up calculations and allow more data to be processed.
However, some cases have surfaced in which the amount and
type of data to be processed (in real time) exceeds the
capabilities of relational data warehouses, even though they
are still sufficient for various analyses.

 E-business infrastructures, cloud and big data analytics 45

A star schema represents the way relational data
warehouses are usually modeled. An example of a star
schema can be seen in Fig. 1. It dictates the structure of the
data that are stored into the data warehouse and the queries
that can be applied to the data warehouse.

Fig. 1. Example of a star schema used for tracking the sales of a company.

The data in a relational data warehouse should be
structured, because semi-structured or unstructured data can
be difficult to process and extract information from [1–3, 8–
12], which is becoming more and more problematic due to a
surge in the amount of collected unstructured data [1, 2].
Relational data warehouses offer very little flexibility; every
change has to be done to the schema directly, which means
agile development methods based on a data warehouse are
mostly out of the question [3, 12]. Sometimes, the
adjustment or expansion of a schema that would be
necessary due to new requirements cannot be done in a
meaningful manner [9]. More often than not, using relational
data warehouses in a distributed setting leads to data
duplication and noticeable increases in query processing
times due to having to fetch table fragments from various
nodes [4, 9–11]. Established solutions can come with high
licensing costs (if proprietary) [9], and they can be slow to
implement due to experts being necessary to do so [3]. In
particular, they require a fair amount of specific
infrastructure (e.g., data marts, Extract-Load-Transform –
ETL processes, On-Line Analytical Processing – OLAP,
reporting tools, etc.) and experts that are well versed in their
development [12]. The experts also have to work together
closely to develop a functional system. Furthermore,
relational data warehouses’ rigid structure can lead to some
tables being heavily populated by NULL values. NULL
values become quite problematic if they represent any
dimension value or if they are part of a foreign key in any of
the fact tables, so much so data warehouse designers try to
avoid them by assigning them different values, redefining
them or even adding special rows to the dimension tables
[10]. Finally, joins can still occur in normalized relational
data warehouses, bringing with them a steep price due to
needing time and memory resources [10, 11]. This is why
denormalized relational data warehouses are more popular.

On the other hand, NoSQL data warehouses are highly
scalable and very flexible [2, 8–10, 13–15]. Their horizontal
scalability is one of their greatest strong points; a new node
can be added to a distributed system without problems and
the database can utilize the disk of the node right away. Both
the scalability and the flexibility of NoSQL databases result
in much less data duplication than a relational database
would require. Any new record can be written onto any disk
the database has access to. They do not store NULL values
[8, 10], they simply omit an attribute from a record if its
value is unknown, which results in less disk usage. The data
that are stored into NoSQL databases do not need to be
transformed into a certain format, which skips the Transform
part of ETL processes [7–9] and considerably speeds up the
process of data loading. The databases’ write operations are
considerably faster (partially due to not performing data
transformation) [3, 7, 8, 14, 17], and they can store
substantial amounts of data (connected to their easy
scalability) [3, 8, 14].

All the listed benefits of using NoSQL databases make
them suitable for storing Big Data. These data have
properties that are often described as “Big Data’s N Vs”,
where N started as three and climbed up to seven. The full
“Seven Vs of Big Data” are as follows [1, 2]:

• volume – Big Data is characterized by large
amounts of data;

• variety – the data are of different formats and have
different levels of structure;

• velocity – the data are generated quickly;

• veracity – the data can be inconsistent or incorrect;

• variability – the data can be interpreted in various
ways;

• value – the usefulness of the data cannot always be
established;

• visualization – the data need to be visualized to
improve or even allow greater understanding.

Even just the first three Vs can cause problems when
trying to store Big Data into relational databases, either as
transactional databases or as data warehouses. On the other
hand, those three Vs are easily solved by using a NoSQL
database (the rest of the Vs have to be handled in a different
manner – e.g., using an external visualization tool).

III. DIFFERENT THOUGHTS ON NOSQL MODELS, APPROACHES,

AND DRAWBACKS

When looking at all the proposed solutions, a clear
preference can be seen: authors either use a column-store [5–
7, 10, 13, 14, 16, 17, 18] or a document-oriented database [3,
4, 8, 11, 12]. Some uses of graph databases have started to
surface, but those are mainly applied to social networks [11].
The following paragraphs summarize the research done on
various aspects of using NoSQL databases as data
warehouses.

Fig. 2 illustrates the structure (or lack thereof) of a
document-oriented database. As can be seen, not all fields
are present in documents that are connected to similar
entities (e.g., the two documents starting with the attribute
“StoreId” – one of them lacks the attribute “StoreNo”).

 2021 International conference on E-business technologies (EBT) 46

Fig. 2. Illustrative example of a document-oriented database used for

tracking the sales of a company.

Reference [4] considers how different ways of organizing
data in a document-oriented data warehouse impact OLAP
queries. They also develop OLAP cuboids that were
previously theorized, but could not be implemented on a
relational data warehouse, namely the nested cuboid and the
detail cuboid. Although the authors speculate drill-down
operations would be much faster on their proposed cuboids,
they run into some implementation problems (one document
in MongoDB cannot exceed 16 MB) and the cuboids require
more memory and their computation lasts longer than
traditional cuboids. When considering the drawbacks of
NoSQL, the authors point out that NoSQL data warehouses
require more storage space in comparison with relational
data warehouses due to duplicating the names of the
attributes in every document. They also find any operation in
need of joins is greatly slowed down and any optimization
can strictly be done manually. In [5], the authors are mostly
concerned with adapting a popular relational data warehouse
schema benchmark to the NoSQL paradigm. However, they
do note that the cost of joins in NoSQL is prohibitively slow
and the referential integrity constraint does not exist, leading
to issues when adapting the benchmark. The authors of [6]
continue the work of [5] and test how the data should be
stored in a NoSQL data warehouse to achieve fast querying.
They conclude that the solutions greatly vary depending on
what needs to be processed and queried, mostly due to trying
to avoid joins in NoSQL. In [7], the authors design a
prototype of a Twitter data NoSQL data warehouse. They
once again try to avoid executing joins and calculating
aggregates during query execution. They also comment on
not being able to use the newest NoSQL technology due to
certain incompatibilities within the software. Reference [13]
engages in developing an approach that would directly
translate a conceptual multidimensional model into a NoSQL
logical model that would be part of an OLAP system (such
translations usually use a relational logical model as an
intermediate step). Even after extensive experimentation, the
authors conclude it is difficult to draw detailed
recommendations as to when column-oriented or document-
oriented databases could be used for OLAP systems.
Reference [14] lists many benefits to using a NoSQL

database as a data warehouse and shows a performance
comparison between Cassandra and OracleDB. Cassandra is
shown to be considerably faster when working with larger
amounts of data, but the study does not address potential
drawbacks or specifics to using a NoSQL data warehouse. In
[15], the authors list various approaches to develop an
enriched NoSQL data warehouse. They settle on ontologies
as a way of achieving their goal. They contemplate
automating the process of data warehouse creation, but they
conclude that NoSQL could be semi-automated at best due to
the semantics being mixed in with the data. The
inconsistency and lack of structure of NoSQL databases
complicates any kind of schema modeling. They consider
adding a NoSQL data warehouse to an existing relational one
a viable option. The authors of [16] propose a new OLAP
operator for columnar data stores, since such databases do
not have any OLAP operators. They need to use an external
application to compute the proposed CN-CUBE (Columnar
NoSQL CUBE) because the column store used for
prototyping (HBase) cannot handle the various aggregates
the cube operator requires. Finally, in [17], similarly to [4,
6], the authors experiment with different ways of organizing
data in a NoSQL data warehouse and measure the
performance of each type of solution. Once again, they evade
joins.

Some authors take a more theoretical approach to NoSQL
data warehouses, but they still highlight some issues that
arise. Reference [1] offers an overview of various efforts that
have been made in the field of storing Big Data meaningfully
(in a way that renders them usable). The authors list
NewSQL and various middleware that can connect different
data sources and present them in a unified manner to the user
as potentially interesting solutions. Ultimately, they predict a
symbiosis of relational and NoSQL technologies in future
data warehouses as neither of the two approaches can fully
replace the other due to their inherent differences. The
authors of [2] explore the possibility of using MapReduce
along with NoSQL databases in a feat to enrich structured
data with information extracted from unstructured data. They
mention the lack of a declarative query language and variety
of implementations as NoSQL characteristics that are
difficult to overcome. They add that users often have to write
their own custom programs to be able to have at least some
ability of running ETL processes on a NoSQL database. In
[3], the authors explore the differences between relational
and NoSQL databases and they try to focus on which
characteristics a reporting tool for NoSQL should have. They
ultimately conclude a “best-of-both-worlds” approach may
be beneficial because it could mitigate the drawbacks of both
methods. The main drawback of NoSQL they identify is that
the technologies have immense problems with join
operations and aggregate functions due to their loose
structure, which makes the development of a reporting tool
challenging. The author of [8] gives a general overview of
available technologies and why a shift to NoSQL might be a
good option. However, the paper indicates that the
schemaless structure of NoSQL only shifts the responsibility
of keeping some sort of structure onto the developer, along
with many aforementioned drawbacks of using NoSQL for
data warehousing. The author of [9] also takes a general
approach to why a change of data warehouse technology
would be pertinent, but, as several other references [1–3],
proposes a combined approach, adding that NoSQL
databases’ query languages are still severely lacking in

 E-business infrastructures, cloud and big data analytics 47

capabilities as opposed to regular SQL. Reference [10] is
concerned with migrating OLAP queries into the NoSQL
world. The author notes that the existing approaches that lead
from a conceptual model to a data warehouse are tailored to
relational data warehouses, making them difficult to translate
to NoSQL. They propose a new approach that would skip the
relational phase of modeling, but the resulting method
requires a new table whenever new information is needed
from the model, which means a lot of data duplication and a
need for larger storage capacities. In [11], they propose an
approach merging document-oriented databases and graph
databases to accurately store the data produced by social
networks. The authors theorize this solution would be fast
and could store both relationship data and content produced
by users, but they do mention that the lack of a standardized
query language and the differences between NoSQL data
models in general make such development difficult.
Reference [12] is concerned with achieving agile
development over a data warehouse, and the authors note
they are willing to sacrifice joining and aggregate values for
the sake of this type of development. They propose a
universal browser, a reporting tool that could function with a
NoSQL data warehouse. One of the key features of this
universal browser would be the option of a “Google-like”
search they feel they could not create with a relational data
warehouse. When discussing the drawbacks of NoSQL, they
admit the Transformation in ETL cannot be avoided
completely, since some structure has to be present in the data
warehouse for it to be useful.

Another problem most of the authors do not address is
that, depending on the chosen NoSQL implementation, joins,
aggregate functions or both might not even be supported.
HBase [5, 6, 13, 16, 17, 18] and MongoDB [3, 4, 12, 13] are
the technologies used in most of the papers due to having
some support for the aforementioned functions. Three of the
referenced papers use Cassandra, and one of them openly
states that joins and aggregate functions are not supported
[7]. Reference [10] does mention support for some aggregate
functions, but does not verify the existence of join
operations. The disparity between the two studies is likely
due to NoSQL being a fast-evolving field, so some
functionalities were most likely added between the writing of
the two studies. The author of [14] does not address the
issue.

The one reference that moves past just theory and
prototypes is [18]. The authors present a NoSQL data
warehouse made for integrating various sources of patient
data measured and observed in clinical trials. There are
several reasons they opt for this approach: there are many
data that get produced by clinical trials; the data are
heterogeneous due to differences in what is tracked and
measured in a study; the studies can change mid-trial and
require new attributes to be tracked. They use a modification
of ETL – ELT or Extract-Load-Transform. They identify that
the data stored in the data warehouse have to be in a certain
format once they are accessed, so they provide a browsing
tool that stores various data mappings that can be applied to
the data once they are fetched from the data warehouse. Once
the data have been mapped according to the requirements of
a user, they suggest storing them in an application data mart
– this way, the correctly formatted data are quickly
accessible and do not need to be reformatted for each access.
However, some minor transformations still need to be made
before the data are stored into the NoSQL data warehouse,

namely the extraction of rows of data and flattening of
hierarchical structures within the data into individual rows.
They mention the ideal solution would be one that would
have the flexibility of a NoSQL store and the querying
efficiency of a relational database. They achieve a similar
solution by using HBase as the NoSQL store and Apache
Phoenix as the relational query engine which can translate
ANSI SQL queries into HBase table scans, although it seems
the authors use the data warehouse purely for storage; all the
transformations and joins happen outside of it.

IV. CONCLUSION

NoSQL is a new, promising approach that could
improve data warehousing in modern times. However, some
glaring issues still remain, so it requires more effort to
become a regularly used and completely viable solution.
Since neither relational data warehouses nor NoSQL data
warehouses can confidently take each other’s place, a
combined solution would probably be the most useful way
forward. It could combine the speed and easy scalability of
NoSQL with the reliability and computing capabilities of
relational data warehouses. Also, columnar stores seem to be
the preferred technology when developing a NoSQL data
warehouse since they resemble widely used relational data
warehouses the most, i.e. share some characteristics with
them (primarily similar structure with rows and columns).

REFERENCES

[1] M. Pticek and B. Vrdoljak, “Big data and new data warehousing
approaches,” in ACM International Conference Proceeding Series.
Association for Computing Machinery, Sep 2017, pp. 6–10.

[2] M. Pticek and B. Vrdoljak, “MapReduce research on warehousing of
big data,” in 2017 40th International Convention on Information and
Communication Technology, Electronics and Microelectronics,
MIPRO 2017 - Proceedings. Institute of Electrical and Electronics
Engineers Inc., Jul 2017, pp. 1361–1366.

[3] Z. Bicevska and I. Oditis, “Towards NoSQL-based Data Warehouse
Solutions,” in Procedia Computer Science, vol. 104. Elsevier B.V.,
Dec 2016, pp. 104–111.

[4] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Document-oriented Data Warehouses: Models and Extended
Cuboids; Extended Cuboids in Oriented Document,” in Proceedings –
International Conference on Research Challenges in Information
Science, vol. 2016–Augus, 2016.

[5] K. Dehdouh, O. Boussaid, and F. Bentayeb, “Columnar NoSQL Star
Schema Benchmark,” Lecture Notes in Computer Science (including
subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 8748, pp. 281–288, 2014.

[6] L. C. Scabora, J. J. Brito, R. R. Ciferri, and C. D. De Aguiar Ciferri,
“Physical data warehouse design on NoSQL databases: OLAP query
processing over HBase,” in ICEIS 2016 - Proceedings of the 18th
International Conference on Enterprise Information Systems, vol. 1,
2016, pp. 111–118.

[7] M. R. Murazza and A. Nurwidyantoro, “Cassandra and SQL database
comparison for near real-time Twitter data warehouse,” in Proceeding
- 2016 International Seminar on Intelligent Technology and Its
Application, ISITIA 2016: Recent Trends in Intelligent
Computational Technologies for Sustainable Energy, 2017, pp. 195–
200.

[8] G. Chandwani, “Nosql Data-Warehouse,” International Journal of
Innovative Research in Computer and Communication Engineering,
vol. 4, spec. issue no. 4, pp. 96–104, 2016.

[9] S. Müller, “Die neue Realität: Erweiterung des Data Warehouse um
Hadoop, NoSQL & Co,” HMD Praxis der Wirtschaftsinformatik, vol.
51, no. 4, pp. 447–457, Aug 2014.

[10] D. Prakash, “NosoLAP: Moving from data warehouse requirements to
NoSQL databases,” in ENASE 2019 - Proceedings of the 14th
International Conference on Evaluation of Novel Approaches to
Software Engineering, 2019, pp. 452–458.

 2021 International conference on E-business technologies (EBT) 48

[11] H. Akid and M. B. Ayed, “Towards NoSQL Graph Data Warehouse
for Big Social Data Analysis,” in Advances in Intelligent Systems and
Computing, vol. 557. Springer International Publishing, 2017, pp.
965–973.

[12] Z. Bicevska, A. Neimanis, and I. Oditis, “NoSQLbased Data
Warehouse Solutions: Sense, Benefits and Prerequisites,” Baltic
Journal of Modern Computing, vol. 4, no. 3, pp. 597–606, 2016.

[13] M. Chevalier, M. El Malki, A. Kopliku, O. Teste, and R. Tournier,
“Implementing multidimensional data warehouses into NoSQL,” in
ICEIS 2015 - 17th International Conference on Enterprise Information
Systems, Proceedings, vol. 1, 2015, pp. 172–183.

[14] J. KURPANIK, “NOSQL DATABASES AS A DATA
WAREHOUSE FOR DECISION SUPPORT SYSTEMS,” Journal of
Science of the Gen. Tadeusz Kosciuszko Military Academy of Land
Forces, vol. 49, no. 3, pp. 124–131, 2017.

[15] M. Pticek and B. Vrdoljak, “Semantic web technologies and big data
warehousing,” in 2018 41st International Convention on Information

and Communication Technology Electronics and Microelectronics,
MIPRO 2018 - Proceedings, 2018, pp. 1214–1219.

[16] K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Columnar
NoSQL CUBE: Agregation operator for columnar NoSQL data
warehouse,” in 2014 IEEE International Conference on Systems, Man
and Cybernetics (SMC), Jan 2014, pp. 3828–3833.

[17] K. Dehdouh, F. Bentayeb, O. Boussaid, and N. Kabachi, “Using the
column oriented NoSQL model for implementing big data
warehouses,” International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA’15), pp. 469–475,
2015.

[18] E. Yang, J. D. Scheff, S. C. Shen, M. A. Farnum, J. Sefton, V. S.
Lobanov, and D. K. Agrafiotis, “A late-binding, distributed, NoSQL
warehouse for integrating patient data from clinical trials,” Database,
vol. 2019, no. 1, pp. 1–16, 2019

