
 IoT and smart environments 172

Testing the efficiency of Wi-Fi data transmission in

ESP-based IoT systems

1st Nikola Mitrović

Department of microelectronics

Faculty of electronic engineering

Niš, Serbia

nikola.i.mitrovic@elfak.ni.ac.rs

3rd Sandra Veljković

Department of microelectronics

Faculty of electronic engineering

Niš, Serbia

sandra.veljkovic@elfak.rs

2ndMilan Đorđević

College of Applied Technical Sciences

Niš, Serbia

milan.nebojsa.djordjevic@gmail.com

4th Danijel Danković

Department of microelectronics

Faculty of electronic engineering

Niš, Serbia

danijel.dankovic@elfak.ni.ac.rs

Abstract—This paper describes process of designing and

testing an Internet of Things (IoT) system for continuous

receiving of the input data. The goal is to design a custom IoT

system and to test the reliability of the designed system, but

also to offer solutions for the improvement. Entire process of

designing of both hardware part of the system and the software

part of the system is explained and main tool used are

described. Main characteristics of the designed systems that

are tested are basic RF characteristics but also transmission of

data of various waveforms. Implementation and analysis of this

type of testing data is important, especially because properties

that are tested are part of the majority of modern IoT systems.

Keywords—Internet of Things, Wi-Fi, ESP32, reliability,

JavaScript

I. INTRODUCTION

Interest in the development of the IoT systems is
continuously growing. Most of the newer devices and
systems are already IoT enabled (in terms that they can
connect to a remote server or to the cloud and exchange
data), while older systems are being empowered with the
modules and subsystems that can enable remote data
monitoring. In 2011. Cisco IBSG predicted that there will be
more than 50 billion devices connected to the Internet by
2020 [1]. Significant improvement in hardware Wi-Fi
modules, especially with the emerging of the companies
from the East is offering greater possibilities of engaging
with these types of modules. Low cost and yet high
performance are making them suitable for many applications
and for wider research. With the appearance of the ESP8266
module, produced by Espressif in 2014, many possibilities
for the application in embedded systems have arisen [2].
Further development of the hardware led to the creation of
ESP32 SoC (System on Chip), which is a device that can
match performance of the high-speed microcontrollers
(MCU), and yet fully utilize integrated Wi-Fi module [3].

With improved availability of these devices, a lot of
systems in various industrial areas are designed. This type of
systems mostly consists of some modules that collects data
from the environment and transmit that data to the remote
server or a software platform. In medicine, IoT systems on
ESP32 found application in vital health signs monitoring [4].

Kristiani et al. reported a system consisting of multiple heart
rate and respiration rate modules. These devices monitor
basic vital signs and in case of the irregularities user is
informed through Wi-Fi connected application. Rai proposed
a smart surveillance system [5]. This system acquires
continuous video and transmits it using Wi-Fi capabilities of
ESP32. Dhingra presented an air pollution monitoring
system [6]. Many gas detecting units are connected to the
Arduino board that is controlling ESP8266 devices. User can
monitor activity of the gas detecting units over an Android
application. Increased interest in this type of systems even
led to creation of the software platforms (such as ThingSpeak
or RainDrops). These types of platforms offer possibilities to
the IoT system designers to pass around software part of the
programming and to focus on the hardware connections and
devices. These platforms even support various types of the
wireless transmission (GSM modules and similar) [7,8]. In
most of these types of applications, aggregated signals are
mostly in limited voltage range and in limited frequency
range.

Even though that there are reports on the design and
operation, reports concerning reliability of this type of
systems are lacking [9]. Investigation on the reliability of the
software part of the IoT system is given by Meneghello [10].
It states that many low-end IoT commercial products do not
yet support security mechanisms. In the matter of reliability
of the hardware part and the system in general, Montoya-
Munoz reported an approach based on Fog Computing [11].
This approach improves reliability of the data collection
process focusing on outlier detection. Assessment of the
reliability of the parts of IoT system is yet to be further
analyzed.

II. DESIGN AND EXPERIMENT SETUP

The goal of the experiment setup is to design an
appropriate environment for the receiving data, transmission
of the data and visualization of data. Experimental setup
consists of two parts, hardware part and software part.

A. Hardware part

Two main approaches of using Wi-Fi modules in
embedded systems are noted [2,3]. First, that is using a

 2021 International conference on E-business technologies (EBT) 173

controlling, driving microcontroller that controls MCU with
Wi-Fi module and second, where Wi-Fi powered MCU
performs as a standalone system. First method is
characteristic for older generations of Wi-Fi modules where
MCUs consisting Wi-Fi modules are not able to deliver high
performance (mostly used for the ESP8266-01 that is
controlled by more powerful MCU using UART over AT
commands). Second method became more versatile when the
development of the chip consisting both Wi-Fi module and
many serial interfaces came to be. This allowed users to use
less devices for the system design and therefore to reduce
energy demand and system cost. However, in the system
where MCU with higher performance is needed, first method
is the only method that can deliver appropriate results. For
this research, only second method is used. Still, other MCU
(STM32 chip with DAC (Digital to Analog converter) is
used, but not to control standalone Wi-Fi modules, but to
generate various waveforms that are used as testing signals
for the Wi-Fi modules. Wi-Fi MCU accepts these signals and
transmits them. Block scheme of the experiment is shown in
Fig. 1.

Fig. 1. Block scheme of the experiment environment.

As shown in the Fig. 1, two different systems are
analyzed. In the both systems, data waveform is generated
using STM32 MCU, specifically STM32H755 mounted on a
Nucleo-H755ZI board [12]. Systems use identical software
part of the system, while the hardware part is different in
each. First system is built around ESP12-S chip [13]. This
module is the improved version of the ESP8266 chip,
mounted on a LoLin board. Board also contains CH340G
chip (UART to USB converter) that enables flashing of the
ESP12-S chip through UART. Second system is built around
ESP32 WROOM2 chip [14]. This chip is also mounted on a
board containing an UART to USB converter for chip
flashing and other components to use with the chip
peripherals. Detailed comparison of the used chips and
boards is given in the Table I.

TABLE I. SPECIFICATION OF THE USED WI-FI MODULES

 Both of the Wi-Fi chips are programmed using Espruino
[15]. Espruino is an open-souce JavaScript interpreter for the
MCUs. While it is generally developed for a variety of
MCUs, it is mostly used for systems including Wi-Fi
interfacing. JavaScript encourages event-based
programming. From the hardware standpoint, it can lead to
the lower power consumption and better handling of the
events. Main drawback of Espruino is that initial firmware
for the chip takes more memory than most of the firmwares,
so it is not suitable with the chips with the low RAM.
However, both of the used modules have more than enough
capacity of the memory, so this limitation is not an issue.
After ADC processing, data is sent to the web server using
regular http request.

B. Software part

Software part consists of the design of the web
application for the server as well as client. Application
backend is designed using JavaScript, specifically node.js
[16]. In the node.js environment, module Express is used for
the server setup, and built-in Events module. Module chart.js
is used for the graphical interpretation of the data. For the
server deployment Heroku platform is used [17]. This
platform does not impose limitation to the application related
to the neither response rate or the size of data being received
for this project. Designed application is available at:
http://ebt-app.herokuapp.com/. Interface of the designed
application is given in the Fig. 2.

Fig. 2. Interface of the designed web application.

 Main part of the interface is the chart that should be
showing received waveform. Title of the application and
conference logo are placed in the header of the interface.
Every received value along with the receipt time is
temporarily stored on the server. The data can be exported as
a CSV file. Also, minimum and maximum received value are
shown above the chart. Those values are used to confirm the
amplitude of the received signal.

C. Experiment flow

Flow of the experiment is given in the Fig. 3. In each
system, using I2C communication, both Nucleo board and
Wi-Fi module are connected to separate OLED displays with
SSD1306 driver [18]. Display is used to inform user of the
ongoing actions and to report possible errors. DAC generated
data is forwarded to the oscilloscope (this is done so that
waveform properties can be verified) and to the Wi-Fi
modules (so that data can sent to the Web server).

 IoT and smart environments 174

For the experiment, data waveform as in Fig. 4 is
generated from the STM32 MCU. Waveform is very simple,
triangular waveform with the frequency of 1 Hz and
amplitude of 3.3 V. Portion consists of five triangles. Same
waveform is delivered ten times to the Wi-Fi module with
the pause of 10 seconds. After that, same portion is delivered
to the other Wi-Fi module. Waveform generation from the
STM32 MCU is issued with the push button.

Fig. 3. Scheme of the experimental setup.

Fig. 4. Test data waveform.

Received data values together with the reception times
are being saved at the server and can be exported to the CSV
document from the designed server. Server application
should recreate signal from the received values and show it
in the chart. Algorithm of the system is presented in the
Fig. 5.

On the start-up, OLED is turned on. After powering, Wi-
Fi module attempts to connect to the Wi-Fi network. While
attempting, user is notified with messages through display.
Wi-Fi module attempts connecting until connection is
established. After connecting, Wi-Fi module is in idle state,
it sets STM32 MCU to idle state, and is ready to receive
data.

Fig. 5. Algorithm of the experiment environment.

User is notified with the message on the display, so the
data generation process can be started. In 100 ms, STM32
checks if the push button is pressed. After pressing, data with
five samples is generated from the DAC and forwarded to
the Wi-Fi module, where ADC is performed. Data is
processed, put into array and checked if it is zero. If not, a
http request for sending processed data is issued, so the data
is sent to the server. If five consecutive ADC data is zero (no
signal, meaning that receipt is finished), Wi-Fi module
returns to idle state until new data is received.

III. EXPERIMENT RESULTS

Experiments are conducted multiple times and average
values from those experiments are plotted in graphs. Form of
the received data is given in Fig. 6 and Fig. 7. Fig. 6 shows
data received from ESP12 Wi-Fi module while Fig. 7
presents data received from the ESP32 Wi-Fi module. In
both of the graphs, waveform looks similar to the test data

 2021 International conference on E-business technologies (EBT) 175

waveform, but anomalies are present in both. Several
conclusions were taken from these results.

Even though that DAC and ADC are performed
continuously, data is not being sent continuously (as
expected). As can be seen from the experiment results, new
data is given to the server in intervals around 300-350 ms
(average 330 ms). That fact is a serious limitation of polling
communication. It is caused by http request duration.

Fig. 6. Received data from the ESP12 chip.

Fig. 7. Received data from the ESP32 chip.

According to the Nyquist criteria, in this case, the
waveform to be recreated can have a minimum period of at
least 600 ms (frequency of 1.67 Hz). Even then, because of
the quantization error of the ADC and noises, received
results can differ from the DAC generated data. Still, in the
very low frequency range, data can be recreated reliably and
completely. As expected, because of the superior capabilities
ESP32 performs with greater precision than ESP12 chip.

Although, duration of the http request process is similar for
both chips.

Data bandwidth and the signal waveform is still limited
with various properties. Data generated with DAC cannot be
measured fully with the ADC. Then again, even if this
limitation is overcame using powerful circuits, Wi-Fi
protocol also set limitation in the bandwidth. Because of that,
using simple http request method cannot deliver reliable
results when the high frequency data is to be delivered in real
time. For this type of application, web sockets or some other
techniques are needed.

CONCLUSION

Process of designing both of the hardware and the
software part of the IoT system is presented. Data is
successfully being generated, then received and processed
with Wi-Fi modules and transferred using Wi-Fi
communication to the designed web server application.
Visualization of the data is successful, although efficiency of
the process highly depends on frequency of the test data.
Limitations to the process are given by multiple factors with
http request duration being the greatest one. To improve
response time, polling techniques must be substituted with
the more compact resources, such as web sockets or
improved data buffering.

ACKNOWLEDGMENT

This research was performed within projects No. OI-
171026 and TR-32026 supported by Ministry of Education,
Science and Technological Development of Republic of
Serbia and by Serbian Academy of Science and Arts (SASA)
under the Grant No. F-148.

REFERENCES

[1] D. Evans, “The Internet of Things: How the Next Evolution of the
Internet Is Changing Everything,” Cisco Internet Business Solutions
Group (IBSG), Cisco Systems, Inc., San Jose, CA, USA, White Paper
2011.

[2] R. S. Rosli, M. H. Habaebi and M. R. Islam, “Characteristic Analysis
of Received Signal Strength Indicator from ESP8266 WiFi
Transceiver Module,” 7th International Conference on Computer and
Communication Engineering (ICCCE), 2018, pp. 504-507.

[3] A. Maier, A. Sharp and Y. Vagapov, “Comparative analysis and
practical implementation of the ESP32 microcontroller module for the
internet of things,” 2017 Internet Technologies and Applications
(ITA), 2017, pp. 143-148.

[4] D. G. Kristiani et al., “The Measuring of Vital Signs Using Internet
Of Things Technology (Heart Rate And Respiration),” 2019
International Seminar on Application for Technology of Information
and Communication (iSemantic), 2019, pp. 417-422.

[5] P. Rai and M. Rehman, “ESP32 Based Smart Surveillance System,”
2019 2nd International Conference on Computing, Mathematics and
Engineering Technologies (iCoMET), 2019, pp. 1-3.

[6] S. Dhingra, R. B. Madda, A. H. Gandomi, R. Patan and M.
Daneshmand, “Internet of Things Mobile–Air Pollution Monitoring
System (IoT-Mobair),” IEEE Internet Things J., vol. 6, no. 3, pp.
5577-5584, June 2019.

[7] M. Đorđević, B. Jovičić, S. Marković, V. Paunović and D. Danković,
“A Smart Data Logger System based on Sensor and Internet of
Things technology as part of the smart faculty,” J. Ambient Intell.
Smart Environ., vol. 12, no. 4, pp. 359-373, July 2020.

[8] D. Danković and M. Đorđević, “A Review of Real Time Smart
System Developed at University of Niš,” Facta Universitatis, vol. 33,
no. 4, pp. 669-686, Dec. 2020.

 IoT and smart environments 176

[9] H. M. Al-Kadhim and H. S. Al-Raweshidy, “Energy Efficient and
Reliable Transport of Data in Cloud-Based IoT,” IEEE Access, vol. 7,
pp. 64641-64650, 2019.

[10] F. Meneghello, M. Calore, D. Zucchetto, M. Polese and A. Zanella,
“IoT: Internet of Threats? A Survey of Practical Security
Vulnerabilities in Real IoT Devices,” IEEE Internet Things J., vol. 6,
no. 5, pp. 8182-8201, Oct. 2019,

[11] A. I. Montoya-Munoz and O. M. C. Rendon, “An Approach Based on
Fog Computing for Providing Reliability in IoT Data Collection: A
Case Study in a Colombian Coffee Smart Farm,” Appl. Sci., vol. 10,
no. 24, p. 8904, Dec. 2020.

[12] Nucleo-H755ZI datasheet. Available at:
https://www.st.com/en/evaluation-tools/nucleo-h755zi-q.html

[13] ESP12-S datasheet. Available at:
https://www.laskarduino.cz/user/related_files/esp-12s.pdf

[14] ESP32-WROOM2 datasheet. Available at:
https://www.espressif.com/sites/default/files/documentation/esp32-
wroom-32_datasheet_en.pdf

[15] Espruino platform. Available at: https://www.espruino.com/

[16] Node.js. Available at: https://nodejs.org/en/

[17] Heroku platform. Available at: https://www.heroku.com/

[18] OLED 0.96” display with SSD1306 driver. Available at: https://cdn-
shop.adafruit.com/datasheets/SSD1306.pdf

