
 2021 International conference on E-business technologies (EBT) 185

A system for evaluation of human driving based on

IoT and computer vision

1st Đorđe Janjić

Faculty of organizational sciences

University of Belgrade

Belgrade, Serbia

djordje.janjic@hotmail.com

Abstract—Object of research in this paper is human

driving. The primary goal of this research is to simplify and

improve driver education for newcomers. This is achieved

through combination of technologies and libraries in Python.

OpenCV is used for computer vision, which predicts and

observes traffic participants via Raspberry Pi microcomputer

and its camera. Haar Cascade is object detection algorithm

that gives the ability to software to detect objects of interest for

evaluating human compliance with traffic rules.

Keywords—human driving, computer vision, artificial

intelligence

I. INTRODUCTION

Safety of human driving, especially along side traffic
participants in a busy traffic, depends on a large number of
variables. Naturally, there will be some errors that can result
in a tragic accident. Unfortunately, each year 1.35 million
people are killed on roadways around the world, and crash
injuries are among leading causes of death globally [1].
That’s the main reason why companies like Tesla and
comma.ai are working on automating vehicles, each on their
own way.

Tesla is a leading company in this field, and they’re
making branded cars. Some of those cars have full
autonomous option, which is known as autopilot. Their
advanced sensor coverage with 12 ultrasonic sensors, 8
surround cameras and 360 degrees of visibility makes the car
one of the safest choices regarding self-driving today [2]. In
comparison, in Q1 2021, there was one accident for every ~
6.74 million kilometers for drivers that had autopilot
enabled, but NHTSA’s data shows that only in US there is a
vehicle crash every ~ 779.000 kilometers [2]. On the other
side, there’s also comma.ai, that tries to make everyday cars
fully autonomous with their product, known as comma two.
They are known for open source policy, so everyone can
contribute to the openpilot software, and be a part of the
community. This product can be really helpful during long
trips, or simply as a way to rest the driver for some period,
without worrying for his safety. Need for driving, while
driver is exhausted, is another way to get into an accident.
These are only some of the efforts to reduce traffic accidents,
and fatal outcomes. However, not much is being done in
educating newcomers, as it is as traditional learning
experience, as it was in the last century.

This paper dives into the complexity of driving and
human compliance with traffic rules. Main goal is to give
drivers opportunity to visually see the results of their driving,
which can be really helpful, especially for beginners. It

evaluates compliance with traffic signs, road lines, and
overall safe driving around other traffic participants,
pedestrians, etc. After the driving session, drivers can
evaluate their results, and on that basis to iteratively improve
their driving.

II. METHODOLOGY

Using cameras and sensors with Raspberry Pi

microcomputer [3] is a great way to improve the human

experience and safety of an environment. Adding the logic

to the software that uses the parameters from sensors and

cameras, and ability to exchange data with other devices,

makes the device in use a smart device. User is interacting

with the device via user interface (UI), which is connected

with the server side of the software that “communicates”

with the data. On the other end, smart device with camera

and sensors, communicates directly with the server side, so

that parameters can be evaluated by the software and then be

stored into the database.

Figure 1 - System architecture

In this paper, three main components are identified as

major points of interest:

• Management of distance from traffic

participants

• Staying in lane

• Detecting traffic signs

A. Management of distance from traffic participants

One of the ways, how human driving can lead to an
accident, is poor management of distance from other cars or
ignoring pedestrians close to the pedestrian crossing. A way
to fix that is detecting and tracking the cars and pedestrians
while driving, which is possible with OpenCV library in

 IoT and smart environments 186

Python, and using camera for evaluating the distance and
speed, which are the most important parameters for keeping
the driver safe [4]. Common rule for safe distance is a “3-
second rule”, where driver can calculate the distance from
another car using a fixed object that is passed by the car in
front, and if he passes that object in less than 3 seconds, he is
too close. That rule can be converted into distance from
another car, but it varies based on the driving speed. If driver
is driving at about 80 km/h, the safe distance would be at
about 67 meters, and if the driving speed is at 50 km/h, then
the safe distance is reduced to about 42 meters, etc. For
purposes of this software, goal is to warn the driver if he is
closer than 10 meters from the car in front of him. First,
software detects cars in the frame via pre-trained Haar
Cascade for car detection. Also, it needs a reference image of
detected car for determining the focal length. Now that focal
length has been found, we can calculate the estimated
distance from the cars in front of the driver in all frames. If
driver gets to close, screen flashes blue color and software
warns the driver to be careful and to manage his distance in a
text form in red color. For the entirety of the driving session,
distance in centimeters will be shown in a text form in the
top left corner of the frame.

Pedestrians are harder to detect and predict their
behavior. Even in everyday human driving, it is sometimes
hard to see some pedestrians in busy city traffic, and that can
lead to serious and fatal outcomes. However, software can be
trained to see things that human would normally miss. Goal
is to detect and predict pedestrian behavior with pre-trained
Haar Cascade for human detection, and based on that alert
the driver if he’s too close while not slowing down. The
method for achieving this will be the same as in the car
detection and distance estimation. Added feature is that if
software detects zebra crossing and a pedestrian in its
vicinity, it signals the buzzer to go off and alert the driver.
Software detects zebra crossings via function used for line
detection. That function is explained in section B.

B. Staying in lane

This tends to be difficult for newcomers to driving, but it
can have some serious consequences. Sometimes, driver can
easily wander off, and without knowing start to change lanes,
which can be dangerous if there are already other cars. To
mitigate that behavior, camera is tracking lines throughout
the whole driving session, and if the driver treads the line, it
will alert him with the built-in sensor, and it will be shown in
the results afterwards. The lines are tracked via Hough
transformation, which works in harmony with canny edge
detection from OpenCV. The way this works is that frame is
forwarded to the function for line detection, where the road is
masked from the frame, as we want from software to only
look at that part of the whole frame. Canny is good for
extracting most of the lines from a frame, but Hough
transformation can detect straight lines, which is useful for
our purpose. Detected lines are colored in blue, but
everything else is a black frame. That way, the software
knows if in the masked area, there is a blue color, the driver
is going into another lane, and it signals the buzzer to go off.
If the frame is completely black, the software signals the
buzzer to turn off. That way the driver can be alerted at all
times.

Also, line detection works well for the zebra crossing
detection, only now the buzzer will go off if the zebra
crossing is detected with the pedestrian in its vicinity. Zebra

crossing is detected if the frame is colored blue more than
black. That way, the software knows that the driver is in
front of the lines that spread throughout his lane.

C. Detecting traffic signs

Another important aspect of human driving and overall
safety for all traffic participants, is human compliance with
traffic rules that can change based on the location, weather
conditions, and other factors. Using Haar Cascade, software
can detect traffic signs, and then evaluate if driver follows
the rules via logic implemented in Python programming
language [5]. For example, if there’s a stop sign, sensors
should give the information to the software if driver stopped
on the sign, as it’s expected. If software detects that driver
did not stop in front of the stop sign, points are deducted in
the final score. After the driving session, the results are
shown to the driver for his further evaluation.

III. SYSTEM FOR EVALUATION OF HUMAN DRIVING

This section describes the development of the software
part and how are the software and hardware integrated.

For the software part, which is a huge part of the whole
ecosystem, it has built-in logic for car, lane and traffic sign
detection. It works via camera that is attached to the
Raspberry Pi.

Technologies that are used for developing this system
are:

• Flask

• MySQL

• OpenCV

• Python

Flask is a framework that is used to build the web
application, where user can view and evaluate his results
after driving sessions. User can navigate with html buttons
on a page, and choose if he wants to start the driving session,
or view the results
(Figure 2). If user chooses to start the app, the camera will
turn on, and the driving session will be started. When the
driver ends the session, he can press the stop button and the
results will be saved in the mysql database, which is
implemented with pymysql library (Figure 3).

User can also view all of his results, by pressing the
button “Preview results”, which will redirect the user to the
results page, and show him the table with the result and the
date, when the result occurred (Figure 4).

Figure 2 - Driving session

 2021 International conference on E-business technologies (EBT) 187

Figure 4 - Results of driving sessions

For mobile application to store the results from driving
sessions, some logic for stopping the camera must be
implemented. The whole code for detection is stored in the
main.py file, where the OpenCV library is used for detecting
traffic participants (Figure 5).

The most important part of the software is car and line
detection, with the distance management of the car in front of
the driver. For distance management to work, we need to
give the software a reference image to work with, and to find
the focal length of the camera that is used for all the
detection (Figure 6). When software detects the car, which is
done through Haar Cascade Classification, it draws a red
rectangle around it, and then it puts the distance in
centimeters at the top left corner of a frame. That is being
done with OpenCV putText function. If the driver is too
close, in this case closer than 8 meters, the blue overlay is
shown on the frame, and the warning text is displayed on the
bottom part of that frame. Also the points of the result are
being reduced by 15 (Figure 7).

Line detection also works within the OpenCV library, but
with Hough Transformation function (Figure 8). First, mask
is applied on each frame, where the region of interest is the
road, as we need the software to look for the lines only on
that part of the frame. The lines are colored in blue, and the
rest of the frame is black. If the blue color shows up in the
frame, that means that the driver is either too close, or hitting
the line. If that’s the case, then the software will signal the
buzzer to go off, every time when the line is showing up in
the frame, and the points are being reduces by 8.

One more functionality of the line detection, is the ability
to detect zebra crossings. The logic is the same, just now the
zebra detection depends on the blue color being the more
dominant one in the frame. If that is the case, and the
pedestrian is detected, buzzer goes off.

Pedestrian detection is the same as car detection, where
Haar Cascade Classifier algorithm is used. Only now, the
yellow rectangle is being drawn around pedestrians (Figure
9).

The third functionality of this software is sign detection,
where only stop sign detection is implemented. It also uses
Haar Cascade algorithm for detection. It draws purple
rectangle around the sign, and the software is looking if the
driver stopped while the sign is being detected (Figure 10).
That is being done with comparing the previous part of the
frame with the next ones. If that part of the frame is the
same, that means that driver indeed stopped at the stop sign.
If that is not the case, the points are being reduced.

Figure 5 - Looping through frames

Figure 3 – Home page

Figure 6 - Car detection and focal length

 IoT and smart environments 188

Figure 8 - Line Detection

Figure 9 - Pedestrian detection

For the hardware part, this system uses Raspberry Pi with
the buzzer sensor for warning the driver if the line is hit, if he
is too close to the car in front of him, or if the pedestrian is
detected at the zebra crossing.

Figure 11 - Raspberry Pi with the buzzer

Figure 7 - Warning text

Figure 10 - Traffic sign detection

 2021 International conference on E-business technologies (EBT) 189

Fritzing scheme of how the buzzer is integrated with the
Raspberry Pi:

Figure 12 - Fritzing scheme

IV. CONCLUSION

This paper presents an application for improving the
safety of a human driving experience. It shows the details of
how some traffic objects are being detected, and then how
the evaluation is being done based on the driving at that
moment. The goal is to try and mitigate potential traffic
accidents, but at the same time to make driving experience
more enjoyable and fun, with the addition of the results of
driving sessions.

The idea with the web application, is to make this system
user friendly to the end users, and give them the ability to
start the detection of the objects with just only one click, and
to view the results of driving sessions in the same manner.

Future development of the software is going to include
detection of more traffic signs, and refining the existing
detection of traffic objects. Also, more sensors are going to
be added to the end product, like LIDAR for detecting the
quality of the road, for the ability to warn the driver if he
needs to slow down. As for the web application, it’s going to
have the functionality of deleting the past results, and more
detailed information of driving sessions, like where the
driver made the error that resulted in reduced points. All of
this will improve this system, and with that overall safety of
a human driving.

REFERENCES

[1] CDC, accessed 11 May 2021, <

https://www.cdc.gov/injury/features/global-road-safety/index.html>

[2] Tesla, accessed 10 May 2021, <
https://www.tesla.com/VehicleSafetyReport>

[3] B. Radenković, M. Zrakić-Despotović, Z. Bogdanović, D. Barać, A.
Labus, and Ž. Bojović, Internet inteligentnih uredjaja. Fakultet
organizacionih nauka, 2017.

[4] OpenCV, accessed 5 May 2021, <www.opencv.org>

[5] Ethan, ecd1012, Autonomous Driving Object Detection on the
Raspberry Pi 4, accessed 9 May 2021,
<https://github.com/ecd1012/rpi_road_object_detection>

https://www.cdc.gov/injury/features/global-road-safety/index.html
https://www.tesla.com/VehicleSafetyReport
www.opencv.org
https://github.com/ecd1012/rpi_road_object_detection

